Low-temperature heat capacity and magnetism in (U1-yLny)O2 and (U1-yAmy)O2 (y=0.01-0.05) solid solutions: Effects of substitution and self-irradiation

被引:1
|
作者
Griveau, Jean-Christophe [1 ]
Vigier, Jean-Francois [1 ]
Popa, Karin [1 ]
Valu, Sorin-Octavian [1 ]
Colineau, Eric [1 ]
Konings, Rudy J. M. [1 ]
机构
[1] European Commiss, Joint Res Ctr, Karlsruhe, Germany
关键词
LATTICE-PARAMETER; URANIUM-DIOXIDE; MIXED OXIDES; O/M RATIO; SUSCEPTIBILITIES; XRD; XANES; UO2; (U; EVOLUTION;
D O I
10.1063/5.0112674
中图分类号
O59 [应用物理学];
学科分类号
摘要
The low-temperature heat capacity of lanthanide-doped (La, Nd) and americium-doped UO2 samples was measured by calorimetry. The results showed a strong effect on the antiferromagnetic C-p anomaly as a result of crystal lattice substitution, defects resulting from self-irradiation, and electron interaction. It was found that the substitution of trivalent ions ( La3+, Nd3+, Am3+) leads to a split of the lambda peak, for which we hypothesize that the clustering of the trivalent ions with the charge compensator pentavalent U5+ can play a role. The overall behavior is confirmed by magnetization measurements using SQUID. The observed differences between La3+, Nd3+, and Am(3+ )are attributed to the f-f exchange interaction. Am-241 decay causes in addition self-irradiation effects (point defects), and reduces Neel temperature, peak intensity, and magnetic entropy as a function of decay (accumulated alpha dose). The observed effects are similar to Pu-238-doped UO2, the slight differences being attributed to a higher degree of disorder in the Am material. (C) 2022 Author(s).
引用
收藏
页数:13
相关论文
共 19 条
  • [1] The low-temperature heat capacity of (U1-yAmy)O2-x for y=0.08 and 0.20
    Valu, O. S.
    Benes, O.
    Colineau, E.
    Griveau, J. -C.
    Konings, R. J. M.
    JOURNAL OF NUCLEAR MATERIALS, 2018, 507 : 126 - 134
  • [2] The high-temperature heat capacity of the (Th,U)O2 and (U,Pu)O2 solid solutions
    Valu, S. O.
    Benes, O.
    Manara, D.
    Konings, R. J. M.
    Cooper, M. W. D.
    Grimes, R. W.
    Gueneau, C.
    JOURNAL OF NUCLEAR MATERIALS, 2017, 484 : 1 - 6
  • [3] α Self-irradiation Effects on Structural Properties of (U,Am)O2±δ Materials
    Lebreton, Florent
    Horlait, Denis
    Prieur, Damien
    Martin, Philippe
    Colle, Jean-Yves
    Janssen, Arne
    Wiss, Thierry
    Scheinost, Andreas
    Delahaye, Thibaud
    MINOS 2ND INTERNATIONAL WORKSHOP, IRRADIATION OF NUCLEAR MATERIALS: FLUX AND DOSE EFFECTS, 2016, 115
  • [4] The low-temperature heat capacity of the (Th,Pu)O2 solid solution
    Valu, O. S.
    Benes, O.
    Konings, R. J. M.
    Griveau, J. -C
    Colineau, E.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2015, 86 : 194 - 206
  • [5] Low-temperature heat capacity of Li x Ni2-x O2 solid solutions
    Gavrichev, K. S.
    Tyurin, A. V.
    Ryumin, M. A.
    Bogomyakov, A. S.
    INORGANIC MATERIALS, 2010, 46 (09) : 1031 - 1037
  • [6] XAS study of (U1-yPuy)O2 solid solutions
    Martin, P.
    Grandjean, S.
    Valot, C.
    Carlot, G.
    Ripert, M.
    Blanc, P.
    Hennig, C.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 444 (410-414) : 410 - 414
  • [7] The effect of lattice disorder on the low-temperature heat capacity of (U1-yThy)O2 and 238Pu-doped UO2
    Valu, Sorin-Octavian
    De Bona, Emanuele
    Popa, Karin
    Griveau, Jean-Christophe
    Colineau, Eric
    Konings, Rudy J. M.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [8] The effect of lattice disorder on the low-temperature heat capacity of (U1−yThy)O2 and 238Pu-doped UO2
    Sorin-Octavian Vălu
    Emanuele De Bona
    Karin Popa
    Jean-Christophe Griveau
    Eric Colineau
    Rudy J. M. Konings
    Scientific Reports, 9
  • [9] Enthalpy measurement on (U1-xPu )O2 (x=0, 0.18, 0.45, and 1) and analysis of heat capacity
    Hirooka, Shun
    Morimoto, Kyoichi
    Matsumoto, Taku
    Ogasawara, Masahiro
    Kato, Masato
    Murakami, Tatsutoshi
    JOURNAL OF NUCLEAR MATERIALS, 2024, 598
  • [10] Low-temperature heat capacity and thermodynamic functions of compounds with the composition Ba(A 2/3 III U1/3)O 3 (AIII = Sc, Y)
    Chernorukov N.G.
    Knyazev A.V.
    Smirnova N.N.
    Ershova A.V.
    Radiochemistry, 2007, 49 (6) : 582 - 585