Improved electrochemical activity of nanostructured Li2FeSiO4/MWCNTs composite cathode

被引:53
作者
Singh, Shivani [1 ]
Mitra, Sagar [1 ]
机构
[1] Indian Inst Technol, Dept Energy Sci & Engn, Electrochem Energy Lab, Bombay 400076, Maharashtra, India
关键词
Cathode material; Electrical conductivity; Lithium-ion batteries; Li2FeSiO4; Multi-walled carbon nanotubes; LITHIUM-ION BATTERIES; SOL-GEL PROCESS; CRYSTAL-STRUCTURE; LI2MSIO4; M; LI; SPECTROSCOPY; PERFORMANCE; ELECTRODE; SURFACE; MN;
D O I
10.1016/j.electacta.2014.01.045
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical activity of nano Li2FeSiO4 material with the Pmn2(1) symmetry is reported against lithium. Small amount of carboxylic group impurity distributed heterogeneously over the Li2FeSiO4 surface is concluded with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. The electrode material with Pmn2(1) symmetry is prepared by simple sol-gel technique and further modified with multi-walled carbon nanotubes (MWCNTs) to achieve better electron passage to the particle-particle boundaries. Our strategy helps to improve the electrochemical performance and storage capacity to a level compared to bare material. The Li2FeSiO4/MWCNT composite electrode delivered first discharge capacity of 240 mAh g(-1) at 16.5 mA g(-1), when it is cycled between 1.5 V-4.8 Vat 20 degrees C. This indicates more than one lithium is extracted. The voltage plateau of second charge is different and lower than that of first charge plateau whereas first and second discharge plateaus are almost similar, structural rearrangement involving the lithium and iron exchange between their sites and pre-activation during first oxidation step are the possible reasons for this phenomenon. Since silicates are inexpensive compared to other electrode materials, we have undertaken this work to improve the electrochemical activity and power performance by nanosizing of particle and adding MWCNTs as conductive additives. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:378 / 386
页数:9
相关论文
共 43 条
[1]   On-demand design of polyoxianionic cathode materials based on electronegativity correlations:: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J].
Arroyo-de Dompablo, M. E. ;
Armand, M. ;
Tarascon, J. M. ;
Amador, U. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1292-1298
[2]   Nanostructured 0.8Li2FeSiO4/0.4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries [J].
Bai, Jingyu ;
Gong, Zhengliang ;
Lv, Dongping ;
Li, Yixiao ;
Zou, Huan ;
Yang, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (24) :12128-12132
[3]   Polymorphism and structural defects in Li2FeSiO4 [J].
Boulineau, Adrien ;
Sirisopanaporn, Chutchamon ;
Dominko, Robert ;
Armstrong, A. Robert ;
Bruce, Peter G. ;
Masquelier, Christian .
DALTON TRANSACTIONS, 2010, 39 (27) :6310-6316
[4]   The Spin-Polarized Electronic Structure of LiFePO4 and FepO4 Evidenced by in-Lab XPS [J].
Castro, L. ;
Dedryvere, R. ;
El Khalifi, M. ;
Lippens, P. -E. ;
Breger, J. ;
Tessier, C. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (41) :17995-18000
[5]   Structural Evolution of Li2Fe1-yMnySiO4 (y=0, 0.2, 0.5, 1) Cathode Materials for Li-Ion Batteries upon Electrochemical Cycling [J].
Chen, Ruiyong ;
Heinzmann, Ralf ;
Mangold, Stefan ;
Chakravadhanula, V. S. Kiran ;
Hahn, Horst ;
Indris, Sylvio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (02) :884-893
[6]  
CHOPELAS A, 1991, AM MINERAL, V76, P1101
[7]  
Cullity B.D., 1956, ELEMENTS XRAY DIFFRA
[8]   Regeneration and characterization of air-exposed Li2FeSiO4 [J].
Deng, C. ;
Zhang, S. ;
Gao, Y. ;
Wu, B. ;
Ma, L. ;
Sun, Y. H. ;
Fu, B. L. ;
Wu, Q. ;
Liu, F. L. .
ELECTROCHIMICA ACTA, 2011, 56 (21) :7327-7333
[9]   Li2MSiO4 (M = Fe and/or Mn) cathode materials [J].
Dominko, R. .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :462-468
[10]   Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Meden, A ;
Remskar, M ;
Jamnik, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :217-222