Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis

被引:60
作者
Bragatto, J. [1 ,2 ]
Segato, F. [2 ,3 ]
Squina, F. M. [2 ]
机构
[1] VTT Brasil Pesquisa & Desenvolvimento Ltda, Barueri, SP, Brazil
[2] Ctr Nacl Pesquisa Energia & Mat CNPEM, Lab Nacl Ciencia & Tecnol Bioetanol CTBE, Campinas, SP, Brazil
[3] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Biomass; Pretreatment; Biorefinery; Oligosaccharide; Probiotics; Recombinant protein; XYLO-OLIGOSACCHARIDES; LIGNOCELLULOSIC MATERIALS; ENZYMATIC PRODUCTION; FUNGAL XYLANASE; PRETREATMENT; HYDROLYSIS; BIOMASS;
D O I
10.1016/j.indcrop.2013.08.062
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Xylan is a structural component of the plant cell wall, the most abundant hemicellulose in the nature and generally is considered as an agricultural waste. However, due to upcoming environmental changes, and the excess of residues generated by industrial process, sustainable methods are being applied in the waste management. The world interest in the utilization of agricultural residues as a source to produce biofuel and other products is increasing. Brazil is the biggest producer of sugarcane in the world generating around 110 million tons of dried bagasse. The hemicellulose in sugarcane bagasse is rich in xylan and can be used to produce xylose, xylitol, second-generation ethanol and xylooligosaccharides (XOS). This work, investigated the combination of the pre-treatment with hydrogen peroxide and acetic acid followed by the application of a recombinant xylanase from Bacillus subtilis to produce XOS from sugarcane bagasse. The main products released by the xylanase after the exposure of sugarcane bagasse to different periods of pre-treatment were xylotriose (X3), xylotetraose (X4), xylopentaose (X5) and also is less amounts xylooligomers up to 11 mers (X11), suggesting that is an endo-acting xylanase. The process yielded was 113 and 119 mg/g of xylooligomers from sugarcane bagasse pre-treated with peroxide-HAc for 7 and 8 h, respectively. The hydrolyzed xylooligomers were identified and quantified by HPAE-PAD validating the efficiency of both methods applied to XOS production from sugarcane bagasse. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 52 条
[1]   Value addition to corncob: Production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154 [J].
Aachary, Ayyappan Appukuttan ;
Prapulla, Siddalingaiya Gurudutt .
BIORESOURCE TECHNOLOGY, 2009, 100 (02) :991-995
[2]   Plant cell wall aromatics: influence on degradation of biomass [J].
Akin, Danny E. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2008, 2 (04) :288-303
[3]   Enzymatic production of Xylooligosaccharide from selected agricultural wastes [J].
Akpinar, Ozlem ;
Erdogan, Kader ;
Bostanci, Seyda .
FOOD AND BIOPRODUCTS PROCESSING, 2009, 87 (C2) :145-151
[4]   Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials [J].
Akpinar, Ozlem ;
Erdogan, Kader ;
Bostanci, Seyda .
CARBOHYDRATE RESEARCH, 2009, 344 (05) :660-666
[5]   Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis [J].
Azevedo Carvalho, Ana Flavia ;
de Oliva Neto, Pedro ;
Da Silva, Douglas Fernandes ;
Pastore, Glaucia Maria .
FOOD RESEARCH INTERNATIONAL, 2013, 51 (01) :75-85
[6]   Microbial xylanolytic enzyme system: Properties and applications [J].
Bajpai, P .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 43, 1997, 43 :141-194
[7]  
Barreteau H, 2006, FOOD TECHNOL BIOTECH, V44, P323
[8]   Isolation of hemicelluloses from sugarcane bagasse at different temperatures: Structure and properties [J].
Bian, Jing ;
Peng, Feng ;
Peng, Xiao-Peng ;
Xu, Feng ;
Sun, Run-Cang ;
Kennedy, John F. .
CARBOHYDRATE POLYMERS, 2012, 88 (02) :638-645
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   Insights on How the Activity of an Endoglucanase Is Affected by Physical Properties of Insoluble Celluloses [J].
Bragatto, Juliano ;
Segato, Fernando ;
Cota, Junio ;
Mello, Danilo B. ;
Oliveira, Marcelo M. ;
Buckeridge, Marcos S. ;
Squina, Fabio M. ;
Driemeier, Carlos .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (21) :6128-6136