MINIMAL NUMBER OF PERIODIC POINTS FOR SMOOTH SELF-MAPS OF TWO-HOLED 3-DIMENSIONAL CLOSED BALL

被引:0
作者
Graff, Grzegorz [1 ]
机构
[1] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland
关键词
Least number of periodic points; Nielsen number; fixed point index; smooth maps; ITERATIONS; INDEXES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be two-holed 3-dimensional closed ball, r a given natural number. We consider f, a continuous self-map of M with real eigenvalues on the second homology group, and determine the minimal number of r-periodic points for all smooth maps homotopic to f.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 14 条
[1]   THE BEHAVIOR OF THE INDEX OF PERIODIC POINTS UNDER ITERATIONS OF A MAPPING [J].
BABENKO, IK ;
BOGATYI, SA .
MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01) :1-26
[2]  
Brown R.F., 1971, LEFSCHETZ FIXED POIN
[3]  
CHOW SN, 1983, LECT NOTES MATH, V1007, P109
[4]   FIXED-POINT INDEXES OF ITERATED MAPS [J].
DOLD, A .
INVENTIONES MATHEMATICAE, 1983, 74 (03) :419-435
[5]  
GRAFF G, MINIMAL NUMBER PERIO
[6]  
GRAFF G, FORUM MATH IN PRESS
[7]  
Graff G, 2006, DISCRETE CONT DYN-A, V16, P843
[8]  
Greenberg M., 1971, LECT ALGEBRAIC TOPOL
[9]   Periods for transversal maps via Lefschetz numbers for periodic points [J].
Guillamon, A ;
Jarque, X ;
Llibre, J ;
Ortega, J ;
Torregrosa, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (12) :4779-4806
[10]  
JEZIERSKI J., 2005, TOPOLOGICAL FIXED PO, V3