On the existence and the uniqueness of the solution of a fluid-structure interaction scattering problem

被引:14
作者
Barucq, Helene [1 ]
Djellouli, Rabia [2 ,3 ]
Estecahandy, Elodie [1 ]
机构
[1] Univ Pau & Pays Adour, LMA UMR CNRS 5142, INRIA Bordeaux Sud Ouest Res Ctr, Project Team Mag 3D, F-64013 Pau, France
[2] Calif State Univ Northridge, IRIS, Northridge, CA 91330 USA
[3] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
关键词
Fluid-solid interaction; Scattering problem; Jones frequency; Garding's inequality; Fredholm alternative; Weighted Sobolev space; ACOUSTIC SCATTERING; SOLID INTERACTION;
D O I
10.1016/j.jmaa.2013.10.081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and uniqueness of the solution of a fluid-structure interaction problem is investigated. The proposed analysis distinguishes itself from previous studies by employing a weighted Sobolev space framework, the DtN operator properties, and the Fredholm theory. The proposed approach allows to extend the range of validity of the standard existence and uniqueness results to the case where the elastic scatterer is assumed to be only Lipschitz continuous, which is of more practical interest. Published by Elsevier Inc.
引用
收藏
页码:571 / 588
页数:18
相关论文
共 51 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], 1992, HDB IMPEDANCE FUNCTI
[3]  
[Anonymous], 1973, ASME J APPL MECH, DOI [DOI 10.1115/1.3423178, 10.1115/1.3423178]
[4]  
[Anonymous], 1992, STUD MATH APPL
[5]  
[Anonymous], 1990, J INTEGRAL EQUATIONS
[6]  
[Anonymous], 2001, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems
[7]   Bayliss-Turkel-lilte radiation conditions on surfaces of arbitrary shape [J].
Antoine, X ;
Barucq, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (01) :184-211
[8]  
Bowman JJ, 1987, Electromagnetic Acoustic Scattering by Simple Shapes
[9]  
Brezis H., 1983, Analyse fonctionnelle, Theorie et applications
[10]  
Buffa A, 2003, LECT NOTES COMP SCI, V28, P23