Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain

被引:155
作者
Bertrand, Pauline Coti [1 ]
O'Kusky, John R. [1 ]
Innis, Sheila M. [1 ]
机构
[1] Univ British Columbia, Nutr Res Program, Child & Family Res Inst, Vancouver, BC V5Z 4H4, Canada
关键词
(n-3)fatty acids; docosahexaenoic acid; neurogenesis; cerebral cortex; dentate gyrus;
D O I
10.1093/jn/136.6.1570
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Docosahexaenoic acid [22:6(n-3)] is enriched in brain membrane phospholipids and essential for brain function. Neurogenesis during embryonic and fetal development requires synthesis of large amounts of membrane phospholipid. We determined whether dietary (n-3) fatty acid deficiency during gestation alters neurogenesis in the embryonic rat brain. Female rats were fed diets with 1.3% energy [(n-3) control] or 0.02% energy [(n-3) deficient], from a-linolenic acid [18:3(n-3)], beginning 2 wk before gestation. Morphometric analyses were performed on embryonic day 19 to measure the mean thickness of the neuroepithelial proliferative zones corresponding to the cerebral cortex (ventricular and subventricular zones) and dentate gyrus (primary dentate neuroepithelium), and the thickness of the cortical plate and sectional area of the dentate gyrus. Phospholipids and fatty acids were determined by HPLC and GLC. Docosahexaenoic acid was 55-65% lower and (n-6) docosapentaenoic acid [22:5(n-6)] was 150-225% higher in brain phospholipids at embryonic day 19 in the (n-3) deficient (n = 6 litters) than in the control (n = 5 litters) group. The mean thickness of the cortical plate and mean sectional area of the primordial dentate gyrus were 26 and 48% lower, respectively, and the mean thicknesses of the cortical ventricular zone and the primary dentate neuroepithelium were 110 and 70% higher, respectively, in the (n-3) deficient than in the control embryonic day 19 embryos. These studies demonstrate that (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain, which could be explained by delay or inhibition of normal development.
引用
收藏
页码:1570 / 1575
页数:6
相关论文
共 56 条
[1]   Decrease in neuron size in docosahexaenoic acid-deficient brain [J].
Ahmad, A ;
Moriguchi, T ;
Salem, N .
PEDIATRIC NEUROLOGY, 2002, 26 (03) :210-218
[2]   A decrease in cell size accompanies a loss of docosahexaenoate in the rat hippocampus [J].
Ahmad, A ;
Murthy, M ;
Greiner, RS ;
Moriguchi, T ;
Salem, N .
NUTRITIONAL NEUROSCIENCE, 2002, 5 (02) :103-113
[3]   MIGRATION AND DISTRIBUTION OF 2 POPULATIONS OF HIPPOCAMPAL GRANULE CELL PRECURSORS DURING THE PERINATAL AND POSTNATAL PERIODS [J].
ALTMAN, J ;
BAYER, SA .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 301 (03) :365-381
[4]   MOSAIC ORGANIZATION OF THE HIPPOCAMPAL NEUROEPITHELIUM AND THE MULTIPLE GERMINAL SOURCES OF DENTATE GRANULE CELLS [J].
ALTMAN, J ;
BAYER, SA .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 301 (03) :325-342
[5]  
[Anonymous], 2000, FATTY ACIDS FOODS TH
[6]  
BAYER SA, 1993, NEUROTOXICOLOGY, V14, P83
[7]  
Berger A, 2002, GENOME BIOL, V3
[8]   A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants [J].
Birch, EE ;
Garfield, S ;
Hoffman, DR ;
Uauy, R ;
Birch, DG .
DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2000, 42 (03) :174-181
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   Docosahexaenoic acid promotes neurite growth in hippocampal neurons [J].
Calderon, F ;
Kim, HY .
JOURNAL OF NEUROCHEMISTRY, 2004, 90 (04) :979-988