Many-body localization of spinless fermions with attractive interactions in one dimension

被引:19
作者
Lin, Sheng-Hsuan [1 ,2 ,3 ]
Sbierski, Bjoern [4 ,5 ]
Dorfner, Florian [2 ,3 ]
Karrasch, Christoph [4 ,5 ]
Heidrich-Meisner, Fabian [2 ,3 ]
机构
[1] Tech Univ Munich, Dept Informat, D-85748 Garching, Germany
[2] Ludwig Maximilians Univ Munchen, Dept Phys, D-80333 Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[4] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[5] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
基金
美国国家科学基金会;
关键词
MATRIX RENORMALIZATION-GROUP; ANDERSON LOCALIZATION; INSULATOR-TRANSITION; QUENCHED DISORDER; QUANTUM; SYSTEMS; BOSONS; CHAINS; PHASE;
D O I
10.21468/SciPostPhys.4.1.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the finite-energy density phase diagram of spinless fermions with attractive interactions in one dimension in the presence of uncorrelated diagonal disorder. Unlike the case of repulsive interactions, a delocalized Luttinger-liquid phase persists at weak disorder in the ground state, which is a well-known result. We revisit the ground-state phase diagram and show that the recently introduced occupation-spectrum discontinuity computed from the eigenspectrum of the one-particle density matrix is noticeably smaller in the Luttinger liquid compared to the localized regions. Moreover, we use the functional renormalization group scheme to study the finite-size dependence of the conductance, which also resolves the existence of the Luttinger liquid and is computationally cheap. Our main results concern the finite-energy density case. Using exact diagonalization and by computing various established measures of the many-body localization-delocalization transition, we argue that the zero-temperature Luttinger liquid smoothly evolves into a finite-energy density ergodic phase without any intermediate phase transition.
引用
收藏
页数:21
相关论文
共 87 条
[1]   Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition [J].
Agarwal, Kartiek ;
Gopalakrishnan, Sarang ;
Knap, Michael ;
Mueller, Markus ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2015, 114 (16)
[2]   Phase transition in a system of one-dimensional bosons with strong disorder [J].
Altman, E ;
Kafri, Y ;
Polkovnikov, A ;
Refael, G .
PHYSICAL REVIEW LETTERS, 2004, 93 (15) :150402-1
[3]   Insulating phases and superfluid-insulator transition of disordered boson chains [J].
Altman, Ehud ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Refael, Gil .
PHYSICAL REVIEW LETTERS, 2008, 100 (17)
[4]   Universal Dynamics and Renormalization in Many-Body-Localized Systems [J].
Altman, Ehud ;
Vosk, Ronen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :383-409
[5]   Superfluid-insulator transition of disordered bosons in one dimension [J].
Altman, Ehud ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Refael, Gil .
PHYSICAL REVIEW B, 2010, 81 (17)
[6]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[7]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[8]   COMBINED EFFECT OF DISORDER AND INTERACTION ON THE CONDUCTANCE OF A ONE-DIMENSIONAL FERMION SYSTEM [J].
APEL, W ;
RICE, TM .
PHYSICAL REVIEW B, 1982, 26 (12) :7063-7065
[9]   Transport in quasiperiodic interacting systems: From superdiffusion to subdiffusion [J].
Bar Lev, Yevgeny ;
Kennes, Dante M. ;
Kloeckner, Christian ;
Reichman, David R. ;
Karrasch, Christoph .
EPL, 2017, 119 (03)
[10]   Absence of Diffusion in an Interacting System of Spinless Fermions on a One-Dimensional Disordered Lattice [J].
Bar Lev, Yevgeny ;
Cohen, Guy ;
Reichman, David R. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)