Co-commutators with Generalized Derivations on Lie Ideals in Prime Rings

被引:2
作者
Dhara, Basudeb [1 ]
机构
[1] Belda Coll, Dept Math, Belda 721424, Paschim Medinip, India
关键词
prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; ANNIHILATOR CONDITIONS;
D O I
10.1142/S1005386713000564
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime ring of characteristic different from 2, La noncentral Lie ideal of R, H and G two nonzero generalized derivations of R. Suppose u(s) (H(u)u-uG(u))u(t) = 0 for all u is an element of L, where s, t >= 0 are fixed integers. Then either (i) there exists p is an element of U such that H(x) = xp for all x is an element of R and G(x) = px for all x is an element of R unless R satisfies S-4 the standard identity in four variables; or (ii) R satisfies S4 and there exist p,q E U such that H(x) = px + xq for all x is an element of R and G(x) = qx + xp for all x is an element of R.
引用
收藏
页码:593 / 600
页数:8
相关论文
共 16 条
[1]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[2]   CENTRALIZING MAPPINGS AND DERIVATIONS IN PRIME-RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1993, 156 (02) :385-394
[3]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728
[4]  
Dhara B, 2007, PUBL MATH-DEBRECEN, V71, P11
[5]   POWER VALUES OF DERIVATIONS WITH ANNIHILATOR CONDITIONS ON LIE IDEALS IN PRIME RINGS [J].
Dhara, Basudeb .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) :2159-2167
[6]   NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS [J].
Dhara, Basudeb ;
De Filippis, Vincenzo .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (03) :599-605
[7]   PRIME NONASSOCIATIVE ALGEBRAS [J].
ERICKSON, TS ;
MARTINDALE, WS ;
OSBORN, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (01) :49-63
[8]  
Faith C., 1963, Acta Math. Acad. Sci. Hung, V14, P369, DOI [10.1007/BF01895723, DOI 10.1007/BF01895723]
[9]  
Jacobson N., 1964, AM MATH SOC COLLOQ P, V37
[10]  
Kharchenko V. K., 1978, Algebra and Logic, V17, P155