Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes

被引:40
作者
Heubner, C. [1 ]
Seeba, J. [1 ,2 ]
Liebmann, T. [2 ]
Nickol, A. [2 ]
Borner, S. [2 ]
Fritsch, M. [2 ]
Nikolowski, K. [2 ]
Wolter, M. [2 ]
Schneider, M. [2 ]
Michaelis, A. [1 ,2 ]
机构
[1] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[2] Fraunhofer IKTS Dresden, D-01277 Dresden, Germany
关键词
Lithium; Battery; Rate capability; Fast discharge; Master curve; Model; LI-ION BATTERIES; THICK ELECTRODES; PROPYLENE CARBONATE; DIFFUSION; CHARGE; TRANSPORT; CATHODES; INTERCALATION; ELECTROLYTES; PERFORMANCE;
D O I
10.1016/j.jpowsour.2018.01.077
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 37 条
[1]   Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content [J].
Amin, Ruhul ;
Chiang, Ming .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) :A1512-A1517
[2]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[3]   Validity of the Bruggeman relation for porous electrodes [J].
Chung, Ding-Wen ;
Ebner, Martin ;
Ely, David R. ;
Wood, Vanessa ;
Garcia, R. Edwin .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (07)
[4]   Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries [J].
Churikov, A. V. ;
Ivanishchev, A. V. ;
Ushakov, A. V. ;
Romanova, V. O. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (05) :1425-1441
[5]   Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries [J].
Colclasure, Andrew M. ;
Kee, Robert J. .
ELECTROCHIMICA ACTA, 2010, 55 (28) :8960-8973
[6]   Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries [J].
Cooper, S. J. ;
Eastwood, D. S. ;
Gelb, J. ;
Damblanc, G. ;
Brett, D. J. L. ;
Bradley, R. S. ;
Withers, P. J. ;
Lee, P. D. ;
Marquis, A. J. ;
Brandon, N. P. ;
Shearing, P. R. .
JOURNAL OF POWER SOURCES, 2014, 247 :1033-1039
[7]   Thick electrodes for Li-ion batteries: A model based analysis [J].
Danner, Timo ;
Singh, Madhav ;
Hein, Simon ;
Kaiser, Joerg ;
Hahn, Horst ;
Latz, Arnulf .
JOURNAL OF POWER SOURCES, 2016, 334 :191-201
[8]  
Denis Y. W., 2006, J ELECTROCHEM SOC, V153, pA835
[9]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[10]   THE USE OF MATHEMATICAL-MODELING IN THE DESIGN OF LITHIUM POLYMER BATTERY SYSTEMS [J].
DOYLE, M ;
NEWMAN, J .
ELECTROCHIMICA ACTA, 1995, 40 (13-14) :2191-2196