Newton's method for analytic systems of equations with constant rank derivatives

被引:22
作者
Dedieu, JP [1 ]
Kim, MH
机构
[1] Univ Toulouse 3, MIP, F-31062 Toulouse 04, France
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
Newton's method; system of equations; least-square solution;
D O I
10.1006/jcom.2001.0612
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the convergence properties of Newton's sequence for analytic systems of equations with constant rank derivatives. Our main result is an alpha-theorem which ensures the convergence of Newton's sequence to a least-square solution of this system. (C) 2001 Elsevier Science (USA).
引用
收藏
页码:187 / 209
页数:23
相关论文
共 18 条
  • [1] [Anonymous], 1986, MERGING DISCIPLINES
  • [2] [Anonymous], ACTA NUMER
  • [3] BENISRAEL A, 1966, J MATH ANAL APPL, V15, P2243
  • [4] Blum L., 1997, COMPLEXITY REAL COMP
  • [5] Dedieu JP, 2000, MATH COMPUT, V69, P1099, DOI 10.1090/S0025-5718-99-01115-1
  • [6] DENNIS JE, 1983, NUMERICAL METHODS UN
  • [7] GAUSS KF, 1809, WERKE, V7, P240
  • [8] HELGASON K, 1979, DIFFERENTIAL GEOMETR
  • [9] KIM MH, 1986, THESIS CUNY
  • [10] KIM MH, 1988, MATH COMPUT