A bio-inspired multi degree of freedom actuator based on a novel cylindrical ionic polymer-metal composite material

被引:42
|
作者
Kim, Seong J. [2 ]
Pugal, David [1 ]
Wong, Johnson [1 ]
Kim, Kwang J. [1 ]
Yim, Woosoon [3 ,4 ]
机构
[1] Univ Nevada, Reno, NV 89557 USA
[2] Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA
[3] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA
[4] Univ Nevada, Intelligent Struct & Control Lab, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Ionic polymer; Actuator; IPMC; Finite element method; FEM; ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS; TRANSDUCERS; FABRICATION;
D O I
10.1016/j.robot.2012.07.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we explore a promising electroactive polymer (EAP), called ionic polymer-metal composite (IPMC) as a material to use as a multi degree of freedom actuator. Configuration of our interest is a cylindrical IPMC with 2-DOF electromechanical actuation capability. The desired functionality was achieved by fabricating unique inter-digitated electrodes. First, a 3D finite element (FE) model was introduced as a design tool to validate if the concept of cylindrical actuators would work. The FE model is based upon the physical transport processes-field induced migration and diffusion of ions. Second, based upon the FE modeling we fabricated a prototype exhibiting desired electromechanical output. The prototype of cylindrical IPMC has a diameter of 1 mm and a 20 mm length. We have successfully demonstrated that the 2-DOF bending of the fabricated cylindrical IPMCs is feasible. Furthermore, the experimental results have given new insight into the physics that is behind the actuation phenomenon of IPMC. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条
  • [1] Two-Degree-of-Freedom Control of an Ionic Polymer-Metal Composite Actuator
    Sasaki, Minoru
    Onouchi, Yusuke
    Tamagawa, Hirohisa
    Ito, Satoshi
    APPLIED ELECTROMAGNETIC ENGINEERING FOR MAGNETIC, SUPERCONDUCTING AND NANOMATERIALS, 2011, 670 : 369 - 378
  • [2] A Physics Model of the Multi-Degree Freedom Ionic Polymer-Metal Composite Cylinder Actuator
    Shen, Qi
    Palmre, Viljar
    Lee, Jameson
    Kim, Kwang J.
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2016, 2016, 9800
  • [3] Ionic Polymer-Metal Composite actuator behaviour in two novel configurations
    Khazravi, M.
    Dehghani-Sanij, A. A.
    ARTIFICIAL MUSCLE ACTUATORS USING ELECTROACTIVE POLYMERS, 2009, 61 : 163 - 168
  • [4] Multiphysics of ionic polymer-metal composite actuator
    Zhu, Zicai
    Asaka, Kinji
    Chang, Longfei
    Takagi, Kentaro
    Chen, Hualing
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (08)
  • [5] Integrated static and dynamic modeling of an ionic polymer-metal composite actuator
    Sun, An-Bang
    Bajon, Damienne
    Moschetta, Jean-Marc
    Benard, Emmanuel
    Thipyopas, Chinnapat
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2015, 26 (10) : 1164 - 1178
  • [6] Ionic polymer-metal composite material as a diaphragm for micropump devices
    Santos, J.
    Lopes, B.
    Costa Branco, P. J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2010, 161 (1-2) : 225 - 233
  • [7] Sulfonated polystyrene-based ionic polymer-metal composite (IPMC) actuator
    Luqman, Mohammad
    Lee, Jang-Woo
    Moon, Kwang-Kil
    Yoo, Young-Tai
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2011, 17 (01) : 49 - 55
  • [8] Verification of Beam Models for Ionic Polymer-Metal Composite Actuator
    Ji, Ai-hong
    Park, Hoon Cheol
    Nguyen, Quoc Viet
    Lee, Jang Woo
    Yoo, Young Tai
    JOURNAL OF BIONIC ENGINEERING, 2009, 6 (03) : 232 - 238
  • [9] Investigation on a linear actuator using an ionic polymer-metal composite
    Wang, Baolei
    Yu, Min
    He, Qingsong
    Ru, Jie
    Dai, Zhendong
    ADVANCES IN BIONIC ENGINEERING, 2014, 461 : 358 - 363
  • [10] A novel crenellated ionic polymer-metal composite (IPMC) actuator with enhanced electromechanical performances
    Chang, Xi Liang
    Chee, Pei Song
    Lim, Eng Hock
    Tan, Raymond Chong Choor
    SMART MATERIALS AND STRUCTURES, 2019, 28 (11)