Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2

被引:359
作者
Medvigy, D. [4 ]
Wofsy, S. C. [3 ,4 ]
Munger, J. W. [3 ,4 ]
Hollinger, D. Y. [1 ]
Moorcroft, P. R. [2 ]
机构
[1] US Forest Serv, No Res Stn, USDA, Durham, NH 03824 USA
[2] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
EDDY COVARIANCE MEASUREMENTS; TERRESTRIAL BIOSPHERE MODEL; MAINTENANCE RESPIRATION; NONLINEAR INVERSION; CARBON-DIOXIDE; CLIMATE-CHANGE; LEAF NITROGEN; LONG-TERM; FOREST; CO2;
D O I
10.1029/2008JG000812
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Insights into how terrestrial ecosystems affect the Earth's response to changes in climate and rising atmospheric CO2 levels rely heavily on the predictions of terrestrial biosphere models (TBMs). These models contain detailed mechanistic representations of biological processes affecting terrestrial ecosystems; however, their ability to simultaneously predict field-based measurements of terrestrial vegetation dynamics and carbon fluxes has remained largely untested. In this study, we address this issue by developing a constrained implementation of a new structured TBM, the Ecosystem Demography model version 2 (ED2), which explicitly tracks the dynamics of fine-scale ecosystem structure and function. Carbon and water flux measurements from an eddy-flux tower are used in conjunction with forest inventory measurements of tree growth and mortality at Harvard Forest (42.5 degrees N, 72.1 degrees W) to estimate a number of important but weakly constrained model parameters. Evaluation against a decade of tower flux and forest dynamics measurements shows that the constrained ED2 model yields greatly improved predictions of annual net ecosystem productivity, carbon partitioning, and growth and mortality dynamics of both hardwood and conifer trees. The generality of the model formulation is then evaluated by comparing the model's predictions against measurements from two other eddy-flux towers and forest inventories of the northeastern United States and Quebec. Despite the markedly different composition throughout this region, the optimized model realistically predicts observed patterns of carbon fluxes and tree growth. These results demonstrate how TBMs parameterized with field-based measurements can provide quantitative insight into the underlying biological processes governing ecosystem composition, structure, and function at larger scales.
引用
收藏
页数:21
相关论文
共 80 条
[1]   The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink [J].
Albani, Marco ;
Medvigy, David ;
Hurtt, George C. ;
Moorcroft, Paul R. .
GLOBAL CHANGE BIOLOGY, 2006, 12 (12) :2370-2390
[2]   The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later [J].
Amthor, JS .
ANNALS OF BOTANY, 2000, 86 (01) :1-20
[3]   THE ROLE OF MAINTENANCE RESPIRATION IN PLANT-GROWTH [J].
AMTHOR, JS .
PLANT CELL AND ENVIRONMENT, 1984, 7 (08) :561-569
[4]  
[Anonymous], 1972, Likelihood
[5]   Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems [J].
Baldocchi, D ;
Valentini, R ;
Running, S ;
Oechel, W ;
Dahlman, R .
GLOBAL CHANGE BIOLOGY, 1996, 2 (03) :159-168
[6]  
Ball J. T., 1987, Progress in Photosynthesis Research, P221, DOI [DOI 10.1007/978-94-017-0519, DOI 10.1007/978-94-017-0519-6_48, 10.1007/978-94-017-0519-648, DOI 10.1007/978-94-017-0519-648]
[7]   Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest [J].
Barford, CC ;
Wofsy, SC ;
Goulden, ML ;
Munger, JW ;
Pyle, EH ;
Urbanski, SP ;
Hutyra, L ;
Saleska, SR ;
Fitzjarrald, D ;
Moore, K .
SCIENCE, 2001, 294 (5547) :1688-1691
[8]   RATIONALE, LIMITATIONS, AND ASSUMPTIONS OF A NORTHEASTERN FOREST GROWTH SIMULATOR [J].
BOTKIN, DB ;
JANAK, JF ;
WALLIS, JR .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1972, 16 (02) :101-&
[9]   A global prognostic scheme of leaf onset using satellite data [J].
Botta, A ;
Viovy, N ;
Ciais, P ;
Friedlingstein, P ;
Monfray, P .
GLOBAL CHANGE BIOLOGY, 2000, 6 (07) :709-725
[10]   Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations [J].
Braswell, BH ;
Sacks, WJ ;
Linder, E ;
Schimel, DS .
GLOBAL CHANGE BIOLOGY, 2005, 11 (02) :335-355