Epigenomics and epigenetic therapy of cancer

被引:129
作者
Brown, R [1 ]
Strathdee, G [1 ]
机构
[1] Univ Glasgow, Canc Res UK Dept Med Oncol, Beatson Labs, Glasgow G61 1BD, Lanark, Scotland
关键词
D O I
10.1016/S1471-4914(02)02314-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epigenetic inactivation of genes that are crucial for the control of normal cell growth is a hallmark of cancer cells. These epigenetic mechanisms include crosstalk between DNA methylation, histone modification and other components of chromatin higher-order structure, and lead to the regulation of gene transcription. Re-expression of genes epigenetically inactivated can result in the suppression of tumour growth or sensitization to other anticancer therapies. Small molecules that reverse epigenetic inactivation are now undergoing clinical trials in cancer patients. This, together with epigenomic analysis of chromatin alterations such as DNA methylation and histone acetylation, opens up the potential both to define epigenetic patterns of gene inactivation in tumours and to use drugs that target epigenetic silencing.
引用
收藏
页码:S43 / S48
页数:6
相关论文
共 31 条
  • [1] Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    Bannister, AJ
    Zegerman, P
    Partridge, JF
    Miska, EA
    Thomas, JO
    Allshire, RC
    Kouzarides, T
    [J]. NATURE, 2001, 410 (6824) : 120 - 124
  • [2] Genomic imprinting in mammals
    Bartolomei, MS
    Tilghman, SM
    [J]. ANNUAL REVIEW OF GENETICS, 1997, 31 : 493 - 525
  • [3] Methylation-induced repression - Belts, braces, and chromatin
    Bird, AP
    Wolffe, AP
    [J]. CELL, 1999, 99 (05) : 451 - 454
  • [4] Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer
    Cameron, EE
    Bachman, KE
    Myöhänen, S
    Herman, JG
    Baylin, SB
    [J]. NATURE GENETICS, 1999, 21 (01) : 103 - 107
  • [5] Demethylase activity is directed by histone acetylation
    Cervoni, N
    Szyf, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (44) : 40778 - 40787
  • [6] Aberrant CpG-island methylation has non-random and tumour-type-specific patterns
    Costello, JF
    Frühwald, MC
    Smiraglia, DJ
    Rush, LJ
    Robertson, GP
    Gao, X
    Wright, FA
    Feramisco, JD
    Peltomäki, P
    Lang, JC
    Schuller, DE
    Yu, L
    Bloomfield, CD
    Caligiuri, MA
    Yates, A
    Nishikawa, R
    Huang, HJS
    Petrelli, NJ
    Zhang, XL
    O'Dorisio, MS
    Held, WA
    Cavenee, WK
    Plass, C
    [J]. NATURE GENETICS, 2000, 24 (02) : 132 - 138
  • [7] Methylation matters
    Costello, JF
    Plass, C
    [J]. JOURNAL OF MEDICAL GENETICS, 2001, 38 (05) : 285 - 303
  • [8] Esteller M, 1999, CANCER RES, V59, P67
  • [9] Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours
    Esteller, M
    Herman, JG
    [J]. JOURNAL OF PATHOLOGY, 2002, 196 (01) : 1 - 7
  • [10] Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors
    Finnin M.S.
    Donigian J.R.
    Cohen A.
    Richon V.M.
    Rifkind R.A.
    Marks P.A.
    Breslow R.
    Pavletich N.P.
    [J]. Nature, 1999, 401 (6749) : 188 - 193