Robust controllability of linear time-invariant interval systems

被引:3
|
作者
Chen, Shinn-Horng [1 ]
Chou, Jyh-Horng [1 ,2 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Mech Engn, Kaohsiung 807, Taiwan
[2] Natl Kaohsiung First Univ Sci & Technol, Inst Syst Informat & Control, Kaohsiung 824, Taiwan
关键词
robust controllability; interval systems; singular value decomposition;
D O I
10.1080/02533839.2012.734624
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The robust controllability problem for linear time-invariant interval systems is studied in this article. The rank preservation problem is converted to a non-singularity analysis problem of the minors of the matrix in discussion. Based on some essential properties of matrix measures, a new, sufficient, algebraically elegant criterion for the robust controllability of linear time-invariant interval systems is established. A numerical example is given to illustrate the application of the proposed sufficient algebraic criterion, and to show that the proposed sufficient condition can obtain less conservative results than the existing ones reported recently in the literature.
引用
收藏
页码:672 / 676
页数:5
相关论文
共 50 条
  • [21] Interval observers for linear time-invariant systems with disturbances
    Mazenc, Frederic
    Bernard, Olivier
    AUTOMATICA, 2011, 47 (01) : 140 - 147
  • [22] Stability and stabilizability of linear time-invariant interval systems
    Wang, Zhuo
    Xu, Tiexiao
    ISA TRANSACTIONS, 2024, 145 : 273 - 284
  • [23] Positive State Controllability of Discrete Linear Time-Invariant Systems
    Ouyadri, Mourad
    Laabissi, Mohamed
    Achhab, Mohammed Elarbi
    ACTA MECHANICA ET AUTOMATICA, 2024, 18 (01) : 110 - 118
  • [24] Dynamic Equilibrium State Controllability of Linear Time-invariant Systems
    Qiu, Dehui
    Wang, Qinglin
    Zhou, You
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3430 - 3434
  • [25] Robust synchronisation of unstable linear time-invariant systems
    Khong, Sei Zhen
    Lovisari, Enrico
    Kao, Chung-Yao
    2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [26] Robust filtering for linear time-invariant continuous systems
    Neveux, Philippe
    Blanco, Eric
    Thomas, Gerard
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (10) : 4752 - 4757
  • [27] Composability and controllability of structural linear time-invariant systems: Distributed verification
    Carvalho, J. Frederico
    Pequito, Sergio
    Pedro Aguiar, A.
    Kar, Soummya
    Johansson, Karl H.
    AUTOMATICA, 2017, 78 : 123 - 134
  • [28] Minimum Number of Controls for Full Controllability of Linear Time-Invariant Systems
    Escobedo, J. O.
    Nosov, V.
    Meda, J. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (11) : 4448 - 4453
  • [29] Rank conditions for controllability of discrete fractional time-invariant linear systems
    Atici, Ferhan M.
    Nguyen, Duc M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (06) : 869 - 881
  • [30] THE CONTROLLABILITY OF LINEAR TIME-INVARIANT SYSTEMS IN CASES OF CONTROL MEDIUM LIMITATION
    HERZ, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (04): : T59 - T60