The electrochemical properties of high-capacity sulfur/reduced graphene oxide with different electrolyte systems

被引:34
作者
Wang, Yun-Xiao [1 ]
Chou, Shu-Lei [1 ]
Liu, Hua-Kun [1 ]
Dou, Shi-Xue [1 ]
机构
[1] Univ Wollongong, ISEM, Wollongong, NSW 2519, Australia
基金
澳大利亚研究理事会;
关键词
Electrolyte; LiNO3; additive; Lithium-sulfur battery; S/RGO cathode; LITHIUM-SULFUR BATTERIES; CATHODE; PERFORMANCE; COMPOSITE;
D O I
10.1016/j.jpowsour.2012.11.152
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium/sulfur battery is a promising electrochemical system with high capacity, which is well-known to undergo a complex multistep reaction during the discharge process. Two types of electrolytes including poly(ethylene glycol) dimethyl ether (PEGDME)-based and 1,3-dioxolane (DOL)/dimethoxyethane (DME)-based electrolytes were investigated here. Furthermore, LiNO3 additive was introduced into the electrolyte in order to effectively eliminate the overcharge effect. The lithium sulfur battery with 1.0 M LiN(CF3SO2)(2) in PEGDME with 0.1 M LiNO3 shows highly stable reversible capacity of 624.8 mAh g(-1) after 200 cycles and improved average coulombic efficiency of 98%. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 245
页数:6
相关论文
共 29 条
[1]   Li/S fundamental chemistry and application to high-performance rechargeable batteries [J].
Akridge, JR ;
Mikhaylik, YV ;
White, N .
SOLID STATE IONICS, 2004, 175 (1-4) :243-245
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[5]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries [J].
Cao, Yuliang ;
Li, Xiaolin ;
Aksay, Ilhan A. ;
Lemmon, John ;
Nie, Zimin ;
Yang, Zhenguo ;
Liu, Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) :7660-7665
[8]   Analysis of Polysulfide Dissolved in Electrolyte in Discharge-Charge Process of Li-S Battery [J].
Diao, Yan ;
Xie, Kai ;
Xiong, Shizhao ;
Hong, Xiaobin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (04) :A421-A425
[9]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[10]   Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content [J].
Evers, Scott ;
Nazar, Linda F. .
CHEMICAL COMMUNICATIONS, 2012, 48 (09) :1233-1235