LOCAL LINEAR CONVERGENCE OF THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR QUADRATIC PROGRAMS

被引:101
作者
Han, Deren [1 ]
Yuan, Xiaoming [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS Jiangsu Prov, Nanjing 210046, Jiangsu, Peoples R China
[2] Hong Kong Baptist Univ, Inst Computat & Theoret Studies, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
alternating direction method of multipliers; linear convergence rate; quadratic program; error bound; SPLITTING ALGORITHMS;
D O I
10.1137/120886753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Douglas-Rachford alternating direction method of multipliers (ADMM) has been widely used in various areas. The global convergence of ADMM is well known, while research on its convergence rate is still in its infancy. In this paper, we show the local linear convergence rate of ADMM for a quadratic program which includes some important applications of ADMM as special cases.
引用
收藏
页码:3446 / 3457
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70034-1
[2]  
BOLEY D., 2012, LOCAL LINEAR C UNPUB
[3]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[4]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[5]  
Eckstein J., 1990, LIDSP1967 MIT
[6]  
FACCHINEI F, 2003, FINITE DIMENSIONAL V, V1
[7]  
Gabay D., 1976, Computers & Mathematics with Applications, V2, P17, DOI 10.1016/0898-1221(76)90003-1
[8]  
GLOWINSKI R, 1975, REV FR AUTOMAT INFOR, V9, P41
[9]  
Glowinski R., 2003, Numerical Methods for Scientific Computing, Variational Problems and Applications
[10]  
Glowinski R., 1989, STUD APPL NUMER MATH