Coating LiFePO4 with Conductive Nanodots by Magnetron Sputtering: Toward High-Performance Cathode for Lithium-Ion Batteries

被引:8
作者
Wang, Jingshi [1 ,2 ]
Zhang, Yixiang [1 ]
Yi, Min [3 ]
Shen, Zhigang [1 ,2 ]
Liu, Lei [1 ]
Liu, Hong [1 ]
Zhang, Xiaojing [1 ]
机构
[1] Beihang Univ, Beijing Key Lab Powder Technol Res & Dev, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[3] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany
关键词
electrochemical performance; LiFePO4; lithium batteries; magnetron sputtering; CARBON-COATED LIFEPO4; ELECTROCHEMICAL PROPERTIES; CENOSPHERE PARTICLES; FABRICATION; CAPACITY;
D O I
10.1002/ente.201800634
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The coating of LiFePO4 (LFP) particles with conductive nanodots is demonstrated for the first time via magnetron sputtering to improve the LFP conductivity and thus the cathode performance in lithium-ion batteries. It is confirmed by diverse characterization that the conductive nanodots-coated LFP have the same crystal structure as the pristine LFP. The conductive nanodots are found to be less than 10 nm in diameter and well distributed on the LFP surface. When used as a cathode material for lithium-ion batteries, the Ag, Co, and indium tin oxide nanodots-coated LFPs show a high discharge capacity of 161.3, 154.7, and 147.9 mAh g(-1), respectively, whereas the pristine LFP has a lower specific capacity of 146.6 mAh g(-1). The coated LFP also has a higher rate capability and a lower charge transfer resistance than the pristine LFP.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[2]   Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: Understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics [J].
Chen, Zhaoyong ;
Du, Binglin ;
Xu, Ming ;
Zhu, Huali ;
Li, Lingjun ;
Wang, Wenhua .
ELECTROCHIMICA ACTA, 2013, 109 :262-268
[3]   Synthesis of olivine-type LiFePO4 by emulsion-drying method [J].
Cho, TH ;
Chung, HT .
JOURNAL OF POWER SOURCES, 2004, 133 (02) :272-276
[4]  
Croce F., 2002, CHEM INFORM, V33, pA47
[5]   Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating [J].
Cui, Yan ;
Zhao, Xiaoli ;
Guo, Ruisong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 490 (1-2) :236-240
[6]   Fabricating three-dimensional mesoporous carbon network-coated LiFePO4/Fe nanospheres using thermal conversion of alginate-biomass [J].
Guo, Hui ;
Zhang, Xudong ;
He, Wen ;
Yang, Xuena ;
Liu, Qinze ;
Li, Mei ;
Wang, Jichao .
RSC ADVANCES, 2016, 6 (21) :16933-16940
[7]   Magnetron sputtering: a review of recent developments and applications [J].
Kelly, PJ ;
Arnell, RD .
VACUUM, 2000, 56 (03) :159-172
[8]   Lithium ion conductivity in single crystal LiFePO4 [J].
Li, Jiying ;
Yao, Wenlong ;
Martin, Steve ;
Vaknin, David .
SOLID STATE IONICS, 2008, 179 (35-36) :2016-2019
[9]   Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery [J].
Li, Ying-Da ;
Zhao, Shi-Xi ;
Nan, Ce-Wen ;
Li, Bao-Hua .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (03) :957-960
[10]   Carbon-coated single-crystalline LiFePO4 nanocomposites for high-power Li-ion batteries: the impact of minimization of the precursor particle size [J].
Liu, Tiefeng ;
Zhao, Li ;
Wang, Dianlong ;
Zhu, Junsheng ;
Wang, Bo ;
Guo, Chenfeng .
RSC ADVANCES, 2014, 4 (20) :10067-10075