Improving electrochemical performance by Na, Mg and Al-ion doping of PbLi2Ti6O14 as anode materials for Li-ion batteries

被引:7
作者
Zheng, Runtian [1 ]
Bi, Wenchao [1 ]
Yu, Haoxiang [1 ]
Cheng, Xing [1 ]
Zhu, Haojie [1 ]
Peng, Na [1 ]
Liu, Tingting [1 ]
Ye, Wuquan [1 ]
Shu, Jie [1 ]
机构
[1] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
PbLi2Ti6O14; Li-ion batteries; Electrochemical activity; Metal ion doping; In situ X-ray diffraction; GRAPHITE-ELECTRODES; TITANIUM PHOSPHATE; LI5CR7TI6O25; NANOWIRES;
D O I
10.1016/j.ceramint.2018.01.082
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, titanium-based oxides have attracted great attention in the research field of secondary Li-ion batteries. However, they suffer from poor electronic conductivity due to a huge band gap. In this paper, PbLi2Ti6O14 is fabricated by a simple one-step solid-state reaction method. To enhance its conductance and Li storage capability, PbLi1.95Na0.05Ti6O14, PbLi1.95Mg0.05TiO14 and PbLi1.95Al0.05Ti6O14 are fabricated by Na, Mg and Al-ion doping. More impressively, PbLi1.95Al0.05Ti6O14 presents a superior reversible capability with a reversible charge capacity of 152.8 mAh g(-1) after 100 cycles at current density 100 mA g(-1) addition, it also clearly demonstrates that pbLi(1.95)Al(0.05)Ti(6)O(14) has good structural stability and electrochemical reversibility by in situ XRD observation. Besides, it also presents a high Li-ion diffusion coefficient of 1.978 x 10(-12) cm(2) s(-1). All of these make it possible to become a superior performance anode material for Li-ion batteries.
引用
收藏
页码:6691 / 6698
页数:8
相关论文
共 27 条
[1]   A review of Battery Electric Vehicle technology and readiness levels [J].
Andwari, Amin Mahmoudzadeh ;
Pesiridis, Apostolos ;
Rajoo, Srithar ;
Martinez-Botas, Ricardo ;
Esfahanian, Vahid .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 78 :414-430
[2]   Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Yu, Minghao ;
Li, Cheng ;
Zhai, Teng ;
Liu, Yi ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10825-10829
[3]   Li2MTi6O14 (M=Sr, Ba):: new anodes for lithium-ion batteries [J].
Belharouak, I ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (06) :435-438
[4]  
Billaud J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.97, 10.1038/NENERGY.2016.97]
[5]   Mossbauer Spectroscopy and Magnetic Measurements As Complementary Techniques for the Phase Analysis of FeP Electrodes Cycling in Li-Ion Batteries [J].
Boyanov, S. ;
Womes, M. ;
Monconduit, L. ;
Zitoun, D. .
CHEMISTRY OF MATERIALS, 2009, 21 (15) :3684-3692
[6]   Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries [J].
Bridel, J. -S. ;
Azais, T. ;
Morcrette, M. ;
Tarascon, J. -M. ;
Larcher, D. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1229-1241
[7]   High performance Li2ZnTi3O8@C anode material fabricated by a facile method without an additional carbon source [J].
Chen, Chi ;
Ai, Changchun ;
Liu, Xinyi ;
He, Yunwei ;
Yang, Shi ;
Wu, Yuanxin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 698 :692-698
[8]   Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in LiNi0.45Mn0.45Co0.1-yAlyO2 Positive Electrode Materials for Li-ion Batteries [J].
Conry, Thomas E. ;
Mehta, Apurva ;
Cabana, Jordi ;
Doeff, Marca M. .
CHEMISTRY OF MATERIALS, 2012, 24 (17) :3307-3317
[9]   Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery [J].
Das, Suman ;
Dutta, Dipak ;
Araujo, Rafael B. ;
Chakraborty, Sudip ;
Ahuja, Rajeev ;
Bhattacharyy, Aninda J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (32) :22323-22330
[10]   Plasma-enhanced atomic layer deposition of titanium phosphate as an electrode for lithium-ion batteries [J].
Dobbelaere, Thomas ;
Mattelaer, Felix ;
Roy, Amit Kumar ;
Vereecken, Philippe ;
Detavernier, Christophe .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (01) :330-338