Uncertainty Principles for Fourier Multipliers

被引:1
作者
Northington, Michael V. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Fourier multiplier; Balian-Low theorem; Uncertainty principle; SHIFT-INVARIANT SUBSPACES; SOBOLEV FUNCTIONS; NEGATIVE POWER; SYSTEMS; SPACES; BASES;
D O I
10.1007/s00041-020-09783-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The admittable Sobolev regularity is quantified for a function, w, which has a zero in the d-dimensional torus and whose reciprocal u = 1/w is a (p, q)-multiplier. Several aspects of this problem are addressed, including zero-sets of positive Hausdorff dimension, matrix valued Fourier multipliers, and non-symmetric versions of Sobolev regularity. Additionally, we make a connection between Fourier multipliers and approximation properties of Gabor systems and shift-invariant systems. We exploit this connection and the results on Fourier multipliers to refine and extend versions of the Balian-Low uncertainty principle in these settings.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] On Gaussian decay rates of harmonic oscillators and equivalences of related Fourier uncertainty principles
    Kulikov, Aleksei
    Oliveira, Lucas
    Ramos, Joao Pedro Gonsalves
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (02) : 481 - 502
  • [32] MARTINGALES AND SHARP BOUNDS FOR FOURIER MULTIPLIERS
    Banuelos, Rodrigo
    Osekowski, Adam
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (01) : 251 - 263
  • [33] Fourier multipliers on the real Hardy spaces
    Sebastian Król
    Archiv der Mathematik, 2016, 106 : 457 - 470
  • [34] ON FOURIER MULTIPLIERS WITH RAPIDLY OSCILLATING SYMBOLS
    Stolyarov, D.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, 35 (04) : 719 - 729
  • [35] Fourier Multipliers and Comparison of Linear Operators
    Trigub, R. M.
    MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 2: DIFFERENTIAL OPERATORS AND MECHANICS, 2009, 191 : 499 - 513
  • [36] Markov dilations of semigroups of Fourier multipliers
    Arhancet, Cedric
    POSITIVITY, 2022, 26 (05)
  • [37] Fourier multipliers on the real Hardy spaces
    Krol, Sebastian
    ARCHIV DER MATHEMATIK, 2016, 106 (05) : 457 - 470
  • [38] Sharp Localized Inequalities for Fourier Multipliers
    Osekowski, Adam
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (06): : 1358 - 1381
  • [39] On Compactness of Commutators of Multiplications and Fourier Multipliers
    Antonic, Nenad
    Misur, Marin
    Mitrovic, Darko
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (04)
  • [40] Radial Fourier multipliers in high dimensions
    Heo, Yaryong
    Nazarov, Fedor
    Seeger, Andreas
    ACTA MATHEMATICA, 2011, 206 (01) : 55 - 92