Optimal Voronoi Tessellations with Hessian-based Anisotropy

被引:13
作者
Budninskiy, Max [1 ]
Liu, Beibei [1 ]
de Goes, Fernando [2 ]
Tong, Yiying [3 ]
Alliez, Pierre [4 ]
Desbrun, Mathieu [1 ,4 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Pixar, Emeryville, CA USA
[3] MSU, E Lansing, MI USA
[4] Inria, Rocquencourt, France
来源
ACM TRANSACTIONS ON GRAPHICS | 2016年 / 35卷 / 06期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Anisotropic meshing; Bregman diagrams; centroidal Voronoi tessellation; optimal Delaunay triangulation;
D O I
10.1145/2980179.2980245
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a variational method to generate cell complexes with local anisotropy conforming to the Hessian of any given convex function and for any given local mesh density. Our formulation builds upon approximation theory to offer an anisotropic extension of Centroidal Voronoi Tessellations which can be seen as a dual form of Optimal Delaunay Triangulation. We thus refer to the resulting anisotropic polytopal meshes as Optimal Voronoi Tessellations. Our approach sharply contrasts with previous anisotropic versions of Voronoi diagrams as it employs first-type Bregman diagrams, a generalization of power diagrams where sites are augmented with not only a scalar-valued weight but also a vector-valued shift. As such, our OVT meshes contain only convex cells with straight edges, and admit an embedded dual triangulation that is combinatorially-regular. We show the effectiveness of our technique using off-the-shelf computational geometry libraries.
引用
收藏
页数:12
相关论文
共 50 条
[1]   Variational tetrahedral meshing [J].
Alliez, P ;
Cohen-Steiner, D ;
Yvinec, M ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :617-625
[2]  
[Anonymous], 1996, International Meshing Roundtable
[3]   PIECEWISE LINEAR ORTHOGONAL APPROXIMATION [J].
App, Andreas ;
Reif, Ulrich .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) :840-856
[4]   A CRITERION FOR THE AFFINE EQUIVALENCE OF CELL COMPLEXES IN RD AND CONVEX POLYHEDRA IN RD+1 [J].
AURENHAMMER, F .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (01) :49-64
[5]  
BOISSONNAT J.-D., 2014, ACM T GRAPH
[6]   Bregman Voronoi Diagrams [J].
Boissonnat, Jean-Daniel ;
Nielsen, Frank ;
Nock, Richard .
DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (02) :281-307
[7]   Anisotropic diagrams: Labelle Shewchuk approach revisited [J].
Boissonnat, Jean-Daniel ;
Wormser, Camille ;
Yvinec, Mariette .
THEORETICAL COMPUTER SCIENCE, 2008, 408 (2-3) :163-173
[8]  
Boissonnat Jean-Daniel, 2006, ACSTR362603 INRIA
[9]  
CGAL, 2016, CGAL 4 8 US REF MAN
[10]  
Chen L, 2004, J COMPUT MATH, V22, P299