Properties of cell death models calibrated and compared using Bayesian approaches

被引:62
作者
Eydgahi, Hoda [1 ,2 ]
Chen, William W. [1 ]
Muhlich, Jeremy L. [1 ]
Vitkup, Dennis [3 ]
Tsitsiklis, John N. [2 ]
Sorger, Peter K. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Syst Biol, Ctr Cell Decis Proc, Boston, MA 02115 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY USA
关键词
apoptosis; Bayesian estimation; biochemical networks; modeling; DYNAMIC BIOLOGICAL-SYSTEMS; TRAIL-INDUCED APOPTOSIS; PARAMETER-ESTIMATION; MEMBRANE PERMEABILIZATION; THERMODYNAMIC INTEGRATION; SIGNALING PATHWAYS; SINGLE CELLS; BCL-2; KINETICS; ROBUSTNESS;
D O I
10.1038/msb.2012.69
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using models to simulate and analyze biological networks requires principled approaches to parameter estimation and model discrimination. We use Bayesian and Monte Carlo methods to recover the full probability distributions of free parameters (initial protein concentrations and rate constants) for mass-action models of receptor-mediated cell death. The width of the individual parameter distributions is largely determined by non-identifiability but covariation among parameters, even those that are poorly determined, encodes essential information. Knowledge of joint parameter distributions makes it possible to compute the uncertainty of model-based predictions whereas ignoring it (e.g., by treating parameters as a simple list of values and variances) yields nonsensical predictions. Computing the Bayes factor from joint distributions yields the odds ratio (similar to 20-fold) for competing 'direct' and 'indirect' apoptosis models having different numbers of parameters. Our results illustrate how Bayesian approaches to model calibration and discrimination combined with single-cell data represent a generally useful and rigorous approach to discriminate between competing hypotheses in the face of parametric and topological uncertainty. Molecular Systems Biology 9: 644; published online 5 February 2013; doi: 10.1038/msb.2012.69
引用
收藏
页数:17
相关论文
共 84 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Akaike H, 1977, ENTROPY MAXIMIZATION
[3]  
Akaike H., 1973, B INT STAT I, V50, P277
[4]   Quantitative analysis of pathways controlling extrinsic apoptosis in single cells [J].
Albeck, John G. ;
Burke, John M. ;
Aldridge, Bree B. ;
Zhang, Mingsheng ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
MOLECULAR CELL, 2008, 30 (01) :11-25
[5]   Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death [J].
Albeck, John G. ;
Burke, John M. ;
Spencer, Sabrina L. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
PLOS BIOLOGY, 2008, 6 (12) :2831-2852
[6]   Physicochemical modelling of cell signalling pathways [J].
Aldridge, Bree B. ;
Burke, John M. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
NATURE CELL BIOLOGY, 2006, 8 (11) :1195-1203
[7]   Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis [J].
Aldridge, Bree B. ;
Gaudet, Suzanne ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[8]  
Allen M. P., 1987, COMPUTER SIMULATION
[9]   On the ergodicity properties of some adaptive MCMC algorithms [J].
Andrieu, Christophe ;
Moulines, Eric .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) :1462-1505
[10]  
[Anonymous], 2021, Bayesian data analysis