Analysis of approximation algorithms for maximal temporal constraint satisfaction problems

被引:0
作者
Mouhoub, M [1 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
来源
IC-AI'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS I-III | 2001年
关键词
temporal reasoning; constraint satisfaction techniques; heuristic searching; planning; scheduling;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an experimental study of the different local search techniques to solve Maximal Temporal Constraint Satisfaction Problems. Comparisons were carried out using Min-Conflicts-Random-Walk, Steepest-Descent-Random-Walk and Tabu Search methods. Empirical evidence shows that the Min-Conflicts-Random-Walk method finds almost always solutions of better quality, i.e solutions having smaller number of violated constraints and is faster than the other approximation methods to find solutions of the same quality.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 9 条
[1]   MAINTAINING KNOWLEDGE ABOUT TEMPORAL INTERVALS [J].
ALLEN, JF .
COMMUNICATIONS OF THE ACM, 1983, 26 (11) :832-843
[2]   INCREASING TREE-SEARCH EFFICIENCY FOR CONSTRAINT SATISFACTION PROBLEMS [J].
HARALICK, RM ;
ELLIOTT, GL .
ARTIFICIAL INTELLIGENCE, 1980, 14 (03) :263-313
[3]   CONSISTENCY IN NETWORKS OF RELATIONS [J].
MACKWORTH, AK .
ARTIFICIAL INTELLIGENCE, 1977, 8 (01) :99-118
[4]   Combining qualitative and quantitative constraints in temporal reasoning [J].
Meiri, I .
ARTIFICIAL INTELLIGENCE, 1996, 87 (1-2) :343-385
[5]  
MOUHOUB FM, 1998, CONSTRAINTS INT J, V2, P151
[6]  
Mouhoub M., 2000, ICTAI 2000, P164
[7]  
SABIN D, 1994, P ECAI 94, P125
[8]  
WALLACE RJ, 1996, LNCS, V1118, P308
[9]  
WALLACE RJ, 1995, LECT NOTES COMPUTER, V923, P121