Motivic Gauss-Bonnet formulas

被引:16
作者
Levine, Marc [1 ]
Raksit, Arpon [2 ]
机构
[1] Univ Duisburg Essen, Fak Math, Essen, Germany
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
motivic homotopy theory; Chow ring; Euler characteristics; hermitian K-theory; COHOMOLOGY THEORIES; K-THEORY;
D O I
10.2140/ant.2020.14.1801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The apparatus of motivic stable homotopy theory provides a notion of Euler characteristic for smooth projective varieties, valued in the Grothendieck-Witt ring of the base field. Previous work of the first author and recent work of Deglise, Jin and Khan established a motivic Gauss-Bonnet formula relating this Euler characteristic to pushforwards of Euler classes in motivic cohomology theories. We apply this formula to SL-oriented motivic cohomology theories to obtain explicit characterizations of this Euler characteristic. The main new input is a uniqueness result for pushforward maps in SL-oriented theories, identifying these maps concretely in examples of interest.
引用
收藏
页码:1801 / 1851
页数:51
相关论文
共 40 条
[11]  
Bloch S., 1994, J. Algebraic Geom., V3, P537
[12]  
Calmes B., 2014, PREPRINT
[13]   Push-forwards for Witt groups of schemes [J].
Calmes, Baptiste ;
Hornbostel, Jens .
COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (02) :437-468
[14]  
Deglise F., 2018, PREPRINT
[15]  
Dold A., 1980, P INT C GEOM TOP WAR, P81
[16]  
Fasel J, 2008, MEM SOC MATH FR, V113, P1
[17]  
FULTON W, 1984, INTERSECTION THEORY, V2
[18]   The six operations in equivariant motivic homotopy theory [J].
Hoyois, Marc .
ADVANCES IN MATHEMATICS, 2017, 305 :197-279
[19]   A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula [J].
Hoyois, Marc .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (06) :3603-3658
[20]  
Kharlamov V. M., 1974, FUNCTIONAL ANAL APPL, V8, P50