Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model

被引:105
作者
Li, Xin [1 ]
Jiang, Weihua [1 ]
Shi, Junping [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Hopf bifurcation; Turing instability; reaction-diffusion model; prey-predator system; Holling type-II functional response; SPATIOTEMPORAL PATTERNS; GLOBAL STABILITY; SYSTEM;
D O I
10.1093/imamat/hxr050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The reaction-diffusion Holling-Tanner predator-prey model with Neumann boundary condition is considered. We perform a detailed stability and Hopf bifurcation analysis and derive conditions for determining the direction of bifurcation and the stability of the bifurcating periodic solution. For partial differential equation (PDE), we consider the Turing instability of the equilibrium solutions and the bifurcating periodic solutions. Through both theoretical analysis and numerical simulations, we show the bistability of a stable equilibrium solution and a stable periodic solution for ordinary differential equation and the phenomenon that a periodic solution becomes Turing unstable for PDE.
引用
收藏
页码:287 / 306
页数:20
相关论文
共 25 条
[11]   MULTIPLE BIFURCATION ANALYSIS AND SPATIOTEMPORAL PATTERNS IN A 1-D GIERER-MEINHARDT MODEL OF MORPHOGENESIS [J].
Liu, Jianxin ;
Yi, Fengqi ;
Wei, Junjie .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (04) :1007-1025
[12]  
Marsden J.E, 1976, The Hopf Bifurcation and Its Applications
[13]  
May R. M., 2001, Stability and Complexity in Model Ecosystems
[14]  
MURRAY J. D., 2002, MATH BIOL, P88
[15]   Positive steady states of the Holling-Tanner prey-predator model with diffusion [J].
Peng, R ;
Wang, MX .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :149-164
[16]   Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model [J].
Peng, Rui ;
Wang, Mingxin .
APPLIED MATHEMATICS LETTERS, 2007, 20 (06) :664-670
[17]  
Ruan Shigui, 1998, Natural Resource Modeling, V11, P131
[18]   Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models [J].
Shi, Junping .
FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (03) :407-424
[19]   STABILITY AND INTRINSIC GROWTH-RATES OF PREY AND PREDATOR POPULATIONS [J].
TANNER, JT .
ECOLOGY, 1975, 56 (04) :855-867