Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model

被引:105
作者
Li, Xin [1 ]
Jiang, Weihua [1 ]
Shi, Junping [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Hopf bifurcation; Turing instability; reaction-diffusion model; prey-predator system; Holling type-II functional response; SPATIOTEMPORAL PATTERNS; GLOBAL STABILITY; SYSTEM;
D O I
10.1093/imamat/hxr050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The reaction-diffusion Holling-Tanner predator-prey model with Neumann boundary condition is considered. We perform a detailed stability and Hopf bifurcation analysis and derive conditions for determining the direction of bifurcation and the stability of the bifurcating periodic solution. For partial differential equation (PDE), we consider the Turing instability of the equilibrium solutions and the bifurcating periodic solutions. Through both theoretical analysis and numerical simulations, we show the bistability of a stable equilibrium solution and a stable periodic solution for ordinary differential equation and the phenomenon that a periodic solution becomes Turing unstable for PDE.
引用
收藏
页码:287 / 306
页数:20
相关论文
共 25 条
[1]  
CHEN S., 2010, GLOBAL STABILI UNPUB
[2]   HOPF BIFURCATION THEOREM IN INFINITE DIMENSIONS [J].
CRANDALL, MG ;
RABINOWITZ, PH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 67 (01) :53-72
[3]   A diffusive predator-prey model in heterogeneous environment [J].
Du, YH ;
Hsu, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (02) :331-364
[4]  
Gasull A., 1997, Publ. Mat, V41, P149, DOI DOI 10.5565/PUBLMAT_
[5]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[6]   Hopf bifurcation analysis of a reaction-diffusion Sel'kov system [J].
Han, Wei ;
Bao, Zhenhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :633-641
[7]  
HASSARD BD, 1980, THEORY APPL HOPF BIF
[8]  
Hsu S. B., 1998, CAN APPL MATH Q, V6, P91
[9]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783
[10]   Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type [J].
Hsu, SB ;
Hwang, TW .
TAIWANESE JOURNAL OF MATHEMATICS, 1999, 3 (01) :35-53