Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage

被引:416
作者
Tritsaris, Georgios A. [1 ,2 ]
Kaxiras, Efthimios [1 ,3 ]
Meng, Sheng [4 ]
Wang, Enge [2 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium-ion battery; energy storage; two-dimensional silicon; adatom adsorption; surface diffusion; ab initio calculations; PLASTIC-DEFORMATION; BATTERY ANODES; INSERTION; ELECTRODES; NANOWIRES; ENERGY;
D O I
10.1021/nl400830u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The energy density of Li-ion batteries depends critically on the specific charge capacity of the constituent electrodes. Silicene, the silicon analogue to graphene, being of atomic thickness could serve as high-capacity host of Li in Li-ion secondary batteries. In this work, we employ first-principles calculations to investigate the interaction of Li with Si in model electrodes of free-standing single-layer and double-layer silicene. More specifically, we identify strong binding sites for Li, calculate the energy barriers accompanying Li diffusion, and present our findings in the context of previous theoretical work related to Li-ion storage in other structural forms of silicon: the bulk and nanowires. The binding energy of Li is similar to 2.2 eV per Li atom and shows small variation with respect to Li content and silicene thickness (one or two layers) while the barriers for Li diffusion are relatively low, typically less than 0.6 eV. We use our theoretical findings to assess the suitability of two-dimensional silicon in the form of silicene layers for Li-ion storage.
引用
收藏
页码:2258 / 2263
页数:6
相关论文
共 44 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium [J].
Cahangirov, S. ;
Topsakal, M. ;
Akturk, E. ;
Sahin, H. ;
Ciraci, S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Controlling Diffusion of Lithium in Silicon Nanostructures [J].
Chan, Tzu-Liang ;
Chelikowsky, James R. .
NANO LETTERS, 2010, 10 (03) :821-825
[7]   Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon [J].
Chen, Lan ;
Liu, Cheng-Cheng ;
Feng, Baojie ;
He, Xiaoyue ;
Cheng, Peng ;
Ding, Zijing ;
Meng, Sheng ;
Yao, Yugui ;
Wu, Kehui .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[8]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[9]  
CUBUK ED, 2013, NANO LETT, DOI DOI 10.1021/NI400132Q
[10]   Multilayer Silicene Nanoribbons [J].
De Padova, Paola ;
Kubo, Osamu ;
Oivieri, Bruno ;
Quaresima, Claudio ;
Nakayama, Tomonobu ;
Aono, Masakazu ;
Le Lay, Guy .
NANO LETTERS, 2012, 12 (11) :5500-5503