Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168

被引:29
|
作者
de Crecy-Lagard, Valerie [1 ,2 ]
Ross, Robert L. [3 ]
Jaroch, Marshall [1 ]
Marchand, Virginie [4 ,5 ]
Eisenhart, Christina [6 ]
Bregeon, Damien [7 ]
Motorin, Yuri [4 ,5 ]
Limbach, Patrick A. [6 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
[2] Univ Florida, Genet Inst, Gainesville, FL 32611 USA
[3] Univ Cincinnati, Dept Canc Biol, Cincinnati, OH 45221 USA
[4] Univ Lorraine, UMR7365 IMoPA CNRS UL, Biopole UL, F-54000 Nancy, France
[5] Univ Lorraine, UMS2008 CNRS UL INSERM, Biopole UL, F-54000 Nancy, France
[6] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA
[7] Sorbonne Univ, Biol Aging & Adaptat, IBPS, 7 Quai St Bernard, F-75252 Paris 05, France
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
tRNA modifications; model bacteria; Gram-positive; methylation; pseudouridine synthase; YhcT; YjbO; ESCHERICHIA-COLI; POSTTRANSCRIPTIONAL MODIFICATIONS; MASS-SPECTROMETRY; RIBOSOMAL-RNA; BIOSYNTHESIS; METHYLTRANSFERASE; IDENTIFICATION; PSEUDOURIDINE; ANTICODON; DISCOVERY;
D O I
10.3390/biom10070977
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extensive knowledge of both the nature and position of tRNA modifications in all cellular tRNAs has been limited to two bacteria,Escherichia coliandMycoplasma capricolum.Bacillus subtilissp subtilis strain 168 is the model Gram-positive bacteria and the list of the genes involved in tRNA modifications in this organism is far from complete. Mass spectrometry analysis of bulk tRNA extracted fromB. subtilis, combined with next generation sequencing technologies and comparative genomic analyses, led to the identification of 41 tRNA modification genes with associated confidence scores. Many differences were found in this model Gram-positive bacteria when compared toE. coli. In general,B. subtilistRNAs are less modified than those inE. coli, even if some modifications, such as m(1)A22 or ms(2)t(6)A, are only found in the model Gram-positive bacteria. Many examples of non-orthologous displacements and of variations in the most complex pathways are described. Paralog issues make uncertain direct annotation transfer fromE. colitoB. subtilisbased on homology only without further experimental validation. This difficulty was shown with the identification of theB. subtilisenzyme that introduces psi at positions 31/32 of the tRNAs. This work presents the most up to date list of tRNA modification genes inB. subtilis, identifies the gaps in knowledge, and lays the foundation for further work to decipher the physiological role of tRNA modifications in this important model organism and other bacteria.
引用
收藏
页码:1 / 23
页数:21
相关论文
共 50 条
  • [41] Improved Production of Fengycin in Bacillus subtilis by Integrated Strain Engineering Strategy
    Gao, Geng-Rong
    Hou, Zheng-Jie
    Ding, Ming -Zhu
    Bai, Song
    Wei, Si -Yu
    Qiao, Bin
    Xu, Qiu-Man
    Cheng, Jing-Sheng
    Yuan, Ying-Jin
    ACS SYNTHETIC BIOLOGY, 2022, 11 (12): : 4065 - 4076
  • [42] Importance of eps genes from Bacillus subtilis in biofilm formation and swarming
    Nagorska, K.
    Ostrowski, A.
    Hine, K.
    Holland, I. B.
    Obuchowski, M.
    JOURNAL OF APPLIED GENETICS, 2010, 51 (03) : 369 - 381
  • [43] Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis
    Vargas-Bautista, Carol
    Rahlwes, Kathryn
    Straight, Paul
    JOURNAL OF BACTERIOLOGY, 2014, 196 (04) : 717 - 728
  • [44] Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168
    Jin, Peng
    Liang, Zhengang
    Li, Hua
    Chen, Chunxiao
    Xue, Yang
    Du, Qizhen
    CARBOHYDRATE POLYMERS, 2021, 251
  • [45] From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later
    Barbe, Valerie
    Cruveiller, Stephane
    Kunst, Frank
    Lenoble, Patricia
    Meurice, Guillaume
    Sekowska, Agnieszka
    Vallenet, David
    Wang, Tingzhang
    Moszer, Ivan
    Medigue, Claudine
    Danchin, Antoine
    MICROBIOLOGY-SGM, 2009, 155 : 1758 - 1775
  • [46] Enhanced D-ribose production by genetic modification and medium optimization in Bacillus subtilis 168
    Zhao, Chen
    Zhao, Xiang-Ying
    Liu, Jian-Jun
    Zhang, Jun-Jiao
    Zhang, Jia-Xiang
    Zhang, Li-He
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 35 (05) : 1137 - 1143
  • [47] Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives
    Coutte, F.
    Leclere, V.
    Bechet, M.
    Guez, J-S.
    Lecouturier, D.
    Chollet-Imbert, M.
    Dhulster, P.
    Jacques, P.
    JOURNAL OF APPLIED MICROBIOLOGY, 2010, 109 (02) : 480 - 491
  • [48] Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B-subtilis WB600 through a combined strategy
    Feng, Yue
    Liu, Song
    Jiao, Yun
    Gao, Hui
    Wang, Miao
    Du, Guocheng
    Chen, Jian
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (04) : 1509 - 1520
  • [49] Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria
    Bernat, Przemyslaw
    Paraszkiewicz, Katarzyna
    Siewiera, Paulina
    Moryl, Magdalena
    Plaza, Grazyna
    Chojniak, Joanna
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2016, 32 (10):
  • [50] Biosynthesis of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant Bacillus subtilis strain
    Yu. M. Kirillova
    E. O. Mikhailova
    N. P. Balaban
    A. M. Mardanova
    A. R. Kayumov
    G. N. Rudenskaya
    S. V. Kostrov
    M. R. Sharipova
    Microbiology, 2006, 75 : 142 - 147