Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168

被引:29
|
作者
de Crecy-Lagard, Valerie [1 ,2 ]
Ross, Robert L. [3 ]
Jaroch, Marshall [1 ]
Marchand, Virginie [4 ,5 ]
Eisenhart, Christina [6 ]
Bregeon, Damien [7 ]
Motorin, Yuri [4 ,5 ]
Limbach, Patrick A. [6 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
[2] Univ Florida, Genet Inst, Gainesville, FL 32611 USA
[3] Univ Cincinnati, Dept Canc Biol, Cincinnati, OH 45221 USA
[4] Univ Lorraine, UMR7365 IMoPA CNRS UL, Biopole UL, F-54000 Nancy, France
[5] Univ Lorraine, UMS2008 CNRS UL INSERM, Biopole UL, F-54000 Nancy, France
[6] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA
[7] Sorbonne Univ, Biol Aging & Adaptat, IBPS, 7 Quai St Bernard, F-75252 Paris 05, France
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
tRNA modifications; model bacteria; Gram-positive; methylation; pseudouridine synthase; YhcT; YjbO; ESCHERICHIA-COLI; POSTTRANSCRIPTIONAL MODIFICATIONS; MASS-SPECTROMETRY; RIBOSOMAL-RNA; BIOSYNTHESIS; METHYLTRANSFERASE; IDENTIFICATION; PSEUDOURIDINE; ANTICODON; DISCOVERY;
D O I
10.3390/biom10070977
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extensive knowledge of both the nature and position of tRNA modifications in all cellular tRNAs has been limited to two bacteria,Escherichia coliandMycoplasma capricolum.Bacillus subtilissp subtilis strain 168 is the model Gram-positive bacteria and the list of the genes involved in tRNA modifications in this organism is far from complete. Mass spectrometry analysis of bulk tRNA extracted fromB. subtilis, combined with next generation sequencing technologies and comparative genomic analyses, led to the identification of 41 tRNA modification genes with associated confidence scores. Many differences were found in this model Gram-positive bacteria when compared toE. coli. In general,B. subtilistRNAs are less modified than those inE. coli, even if some modifications, such as m(1)A22 or ms(2)t(6)A, are only found in the model Gram-positive bacteria. Many examples of non-orthologous displacements and of variations in the most complex pathways are described. Paralog issues make uncertain direct annotation transfer fromE. colitoB. subtilisbased on homology only without further experimental validation. This difficulty was shown with the identification of theB. subtilisenzyme that introduces psi at positions 31/32 of the tRNAs. This work presents the most up to date list of tRNA modification genes inB. subtilis, identifies the gaps in knowledge, and lays the foundation for further work to decipher the physiological role of tRNA modifications in this important model organism and other bacteria.
引用
收藏
页码:1 / 23
页数:21
相关论文
共 50 条
  • [31] Construction of acetoin high-producing Bacillus subtilis strain
    Tian, Yanjun
    Xu, Hui
    Liu, Jianjun
    Chen, Wei
    Sun, Wentao
    Chen, Yongquan
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2016, 30 (04) : 700 - 705
  • [32] Improved Production of Sublancin 168 Biosynthesized by Bacillus subtilis 168 Using Chemometric Methodology and Statistical Experimental Designs
    Ji, Shengyue
    Li, Weili
    Xin, Haiyun
    Wang, Shan
    Cao, Binyun
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [33] Complete Genome of Bacillus subtilis subsp subtilis KCTC 3135T and Variation in Cell Wail genes of B. subtilis Strains
    Ahn, Seonjoo
    Jun, Sangmi
    Ro, Hyun-Joo
    Kim, Ju Han
    Kim, Seil
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 28 (10) : 1760 - 1768
  • [34] Efficient Synthesis of Crocins from Crocetin by a Microbial Glycosyltransferase from Bacillus subtilis 168
    Ding, Fangyu
    Liu, Feng
    Shao, Wenming
    Chu, Jianlin
    Wu, Bin
    He, Bingfang
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (44) : 11701 - 11708
  • [35] Pylb-based overexpression of cytochrome P450 in Bacillus subtilis 168
    Wichai, Thanaporn
    Sooksai, Sarintip
    Noitang, Sajee
    Vangnai, Alisa S.
    Kotchaplai, Panaya
    ENZYME AND MICROBIAL TECHNOLOGY, 2025, 185
  • [36] Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties
    Boka, Bettina
    Manczinger, Laszlo
    Kocsube, Sandor
    Shine, Kadaikunnan
    Alharbi, Naiyf S.
    Khaled, Jamal M.
    Munsterkotter, Martin
    Vagvolgyi, Csaba
    Kredics, Laszlo
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2019, 35 (03):
  • [37] Purification and characterisation of uricase from Bacillus subtilis SP6
    Pustake, Sneha O.
    Bhagwat, Prashant
    Pillai, Santhosh
    Dandge, Padma B.
    PROCESS BIOCHEMISTRY, 2022, 113 : 55 - 61
  • [38] Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics
    Hess, Becky M.
    Xue, Junfeng
    Markillie, Lye Meng
    Taylor, Ronald C.
    Wiley, H. Steven
    Ahring, Birgitte K.
    Linggi, Bryan
    PLOS ONE, 2013, 8 (06):
  • [39] A Bacillus subtilis strain with efficient algaecide of Microcystis aeruginosa and degradation of microcystins
    Chen, Yuanyuan
    Xiong, Fei
    Zhu, Ying
    Zhai, Dongdong
    Liu, Hongyan
    Zhang, Lin
    Xia, Ming
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [40] Purification and Characterization of a Thrombolytic Enzyme Produced by a New Strain of Bacillus subtilis
    Frias, Jorge
    Toubarro, Duarte
    Fraga, Alexandra
    Botelho, Claudia
    Teixeira, Jose
    Pedrosa, Jorge
    Simoes, Nelson
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 31 (02) : 327 - 337