Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168

被引:29
|
作者
de Crecy-Lagard, Valerie [1 ,2 ]
Ross, Robert L. [3 ]
Jaroch, Marshall [1 ]
Marchand, Virginie [4 ,5 ]
Eisenhart, Christina [6 ]
Bregeon, Damien [7 ]
Motorin, Yuri [4 ,5 ]
Limbach, Patrick A. [6 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
[2] Univ Florida, Genet Inst, Gainesville, FL 32611 USA
[3] Univ Cincinnati, Dept Canc Biol, Cincinnati, OH 45221 USA
[4] Univ Lorraine, UMR7365 IMoPA CNRS UL, Biopole UL, F-54000 Nancy, France
[5] Univ Lorraine, UMS2008 CNRS UL INSERM, Biopole UL, F-54000 Nancy, France
[6] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA
[7] Sorbonne Univ, Biol Aging & Adaptat, IBPS, 7 Quai St Bernard, F-75252 Paris 05, France
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
tRNA modifications; model bacteria; Gram-positive; methylation; pseudouridine synthase; YhcT; YjbO; ESCHERICHIA-COLI; POSTTRANSCRIPTIONAL MODIFICATIONS; MASS-SPECTROMETRY; RIBOSOMAL-RNA; BIOSYNTHESIS; METHYLTRANSFERASE; IDENTIFICATION; PSEUDOURIDINE; ANTICODON; DISCOVERY;
D O I
10.3390/biom10070977
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extensive knowledge of both the nature and position of tRNA modifications in all cellular tRNAs has been limited to two bacteria,Escherichia coliandMycoplasma capricolum.Bacillus subtilissp subtilis strain 168 is the model Gram-positive bacteria and the list of the genes involved in tRNA modifications in this organism is far from complete. Mass spectrometry analysis of bulk tRNA extracted fromB. subtilis, combined with next generation sequencing technologies and comparative genomic analyses, led to the identification of 41 tRNA modification genes with associated confidence scores. Many differences were found in this model Gram-positive bacteria when compared toE. coli. In general,B. subtilistRNAs are less modified than those inE. coli, even if some modifications, such as m(1)A22 or ms(2)t(6)A, are only found in the model Gram-positive bacteria. Many examples of non-orthologous displacements and of variations in the most complex pathways are described. Paralog issues make uncertain direct annotation transfer fromE. colitoB. subtilisbased on homology only without further experimental validation. This difficulty was shown with the identification of theB. subtilisenzyme that introduces psi at positions 31/32 of the tRNAs. This work presents the most up to date list of tRNA modification genes inB. subtilis, identifies the gaps in knowledge, and lays the foundation for further work to decipher the physiological role of tRNA modifications in this important model organism and other bacteria.
引用
收藏
页码:1 / 23
页数:21
相关论文
共 50 条
  • [1] Engineering of Bacillus subtilis 168 for Increased Nisin Resistance
    Hansen, Mette E.
    Wangari, Romilda
    Hansen, Egon B.
    Mijakovic, Ivan
    Jensen, Peter R.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (21) : 6688 - 6695
  • [2] Physiologic Consequences of Glucose Transport and Phosphoenolpyruvate Node Modifications in Bacillus subtilis 168
    Cabrera-Valladares, Natividad
    Martinez, Luz M.
    Flores, Noemi
    Hernandez-Chavez, Georgina
    Martinez, Alfredo
    Bolivar, Francisco
    Gosset, Guillermo
    JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 22 (03) : 177 - 197
  • [3] First Biochemical Characterization of a Methylcitric Acid Cycle from Bacillus subtilis Strain 168
    Reddick, Jason J.
    Sirkisoon, Sherona
    Dahal, Rejwi Acharya
    Hardesty, Grant
    Hage, Natalie E.
    Booth, William T.
    Quattlebaum, Amy L.
    Mills, Suzette N.
    Meadows, Victoria G.
    Adams, Sydney L. H.
    Doyle, Jennifer S.
    Kiel, Brittany E.
    BIOCHEMISTRY, 2017, 56 (42) : 5698 - 5711
  • [4] Functional Analysis of Bacillus subtilis Genes Involved in the Biosynthesis of 4-Thiouridine in tRNA
    Rajakovich, Lauren J.
    Tomlinson, John
    Dos Santos, Patricia C.
    JOURNAL OF BACTERIOLOGY, 2012, 194 (18) : 4933 - 4940
  • [5] Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly
    Popova, Anna M.
    Jain, Nikhil
    Dong, Xiyu
    Abdollah-Nia, Farshad
    Britton, Robert A.
    Williamson, James R.
    NUCLEIC ACIDS RESEARCH, 2024, 52 (18) : 11203 - 11217
  • [6] Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis
    Anton, Brian P.
    Russell, Susan P.
    Vertrees, Jason
    Kasif, Simon
    Raleigh, Elisabeth A.
    Limbach, Patrick A.
    Roberts, Richard J.
    NUCLEIC ACIDS RESEARCH, 2010, 38 (18) : 6195 - 6205
  • [7] An updated metabolic view of the Bacillus subtilis 168 genome
    Belda, Eugeni
    Sekowska, Agnieszka
    Le Fevre, Francois
    Morgat, Anne
    Mornico, Damien
    Ouzounis, Christos
    Vallenet, David
    Medigue, Claudine
    Danchin, Antoine
    MICROBIOLOGY-SGM, 2013, 159 : 757 - 770
  • [8] Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus subtilis and Escherichia coli tRNA
    Lauhon, Charles T.
    JOURNAL OF BACTERIOLOGY, 2019, 201 (20)
  • [9] Bacillus subtilis exhibits MnmC-like tRNA modification activities
    Moukadiri, Ismail
    Villarroya, Magda
    Benitez-Paez, Alfonso
    Armengod, M. -Eugenia
    RNA BIOLOGY, 2018, 15 (09) : 1167 - 1173
  • [10] A model industrial workhorse: Bacillus subtilis strain 168 and its genome after a quarter of a century
    Bremer, Erhard
    Calteau, Alexandra
    Danchin, Antoine
    Harwood, Colin
    Helmann, John D.
    Medigue, Claudine
    Palsson, Bernhard O.
    Sekowska, Agnieszka
    Vallenet, David
    Zuniga, Abril
    Zuniga, Cristal
    MICROBIAL BIOTECHNOLOGY, 2023, 16 (06): : 1203 - 1231