Semi-Lagrangian schemes for the two-dimensional Vlasov-Poisson system on unstructured meshes

被引:6
作者
Besse, N
Segré, J
Sonnendrücker, E
机构
[1] Univ Strasbourg 1, CNRS, Inst Rech Math Avancee, Strasbourg, France
[2] CEA Saclay, Gif Sur Yvette, France
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 2005年 / 34卷 / 3-5期
关键词
semi-Lagrangian schemes; Vlasov-Poisson; charge particle beams; plasma physics;
D O I
10.1080/00411450500274592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present new high-order, semi-Lagrangian schemes for solving the Vlasov-Poisson system on an unstructured four-dimensional phase-space mesh. The method is based on the propagation of the distribution function and its jacobian by following the characteristic curves backward. Then the distribution function is reconstructed using high-order and few diffusive interpolation operators coming from the finite element and the computer aided geometric design (CAGD) literature. Numerical tests in plasma physics and charged-particle beam transport are investigated.
引用
收藏
页码:311 / 332
页数:22
相关论文
共 20 条
[1]  
BERNADOU M, 1982, FINITE METHOD THIN S
[2]  
BERNADOU M, 1994, RECHERCHE MATH APPL
[3]   A data-bounded quadratic interpolant on triangles and tetrahedra [J].
Berzins, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01) :177-197
[4]   Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space [J].
Besse, N ;
Sonnendrücker, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (02) :341-376
[5]  
BESSE N, 2003, THESIS U L PASTEUR S
[6]  
BESSE N, 2001, NUMERICAL MATH ADV A, P437
[7]  
BESSE N, UNPUB CONVERGENCE HI
[8]   INTEGRATION OF VLASOV EQUATION IN CONFIGURATION SPACE [J].
CHENG, CZ ;
KNORR, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (03) :330-351
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]  
Davidson R. C., 2001, PHYS INTENSE CHARGED