New asymptotic expansions of the quotient of gamma functions

被引:21
作者
Buric, Tomislav [1 ]
Elezovic, Neven [1 ]
机构
[1] Univ Zagreb, Dept Appl Math, Fac Elect Engn & Comp, Zagreb 10000, Croatia
关键词
gamma function; Bernoulli polynomials; Stirling formula; BOUNDS; INEQUALITY; RATIO;
D O I
10.1080/10652469.2011.591393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Asymptotic expansions of the function [Gamma(x + t)/Gamma(x + s)](1/(t-s)) involving exponential function are given and analysed. An efficient algorithm for calculating coefficients of these expansions is obtained. An application to the asymptotic expansion of the central binomial coefficient is given.
引用
收藏
页码:355 / 368
页数:14
相关论文
共 13 条
[1]   Two new asymptotic expansions of the ratio of two gamma functions [J].
Abad, J ;
Sesma, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (02) :359-363
[2]  
Abramowitz M.., 1970, NATL BUREAU STANDARD, V55
[3]  
[Anonymous], 1969, SPECIAL FUNCTIONS TH
[4]   STIRLING'S FORMULA REVISITED VIA SOME CLASSICAL AND NEW INEQUALITIES [J].
Bukac, Josef ;
Buric, Tomislav ;
Elezovic, Neven .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (01) :235-245
[5]  
Buric T, 2011, J COMPUT ANAL APPL, V13, P785
[6]   Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions [J].
Buric, Tomislav ;
Elezovic, Neven .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (11) :3315-3331
[7]   The best bounds in Wallis' inequality [J].
Chen, CP ;
Qi, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :397-401
[8]   The best bounds in Gautschi's inequality [J].
Elezovic, N ;
Giordano, C ;
Pecaric, J .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (02) :239-252
[9]  
Erdelyi A., 1956, Asymptotic Expansions
[10]  
Luke Y. L., 1975, MATH FUNCTIONS THEIR, V1