Polymer model with Epigenetic Recoloring Reveals a Pathway for the de novo Establishment and 3D Organization of Chromatin Domains

被引:97
作者
Michieletto, D. [1 ]
Orlandini, E. [2 ,3 ]
Marenduzzo, D. [1 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, SUPA, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy
[3] Univ Padua, Sez INFN, Via Marzolo 8, I-35131 Padua, Italy
基金
欧洲研究理事会;
关键词
X-CHROMOSOME INACTIVATION; COLLAPSE TRANSITION; DYNAMICS; KINETICS; MEMORY; HETEROCHROMATIN; INHERITANCE; COMPLEXITY; PRINCIPLES; BINDING;
D O I
10.1103/PhysRevX.6.041047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the most important problems in development is how epigenetic domains can first be established, and then maintained, within cells. To address this question, we propose a framework that couples threedimensional chromatin folding dynamics to a " recoloring" process modeling the writing of epigenetic marks. Because many intrachromatin interactions are mediated by bridging proteins, we consider a " two-state" model with self-attractive interactions between two epigenetic marks that are alike (either active or inactive). This model displays a first-order-like transition between a swollen, epigenetically disordered phase and a compact, epigenetically coherent chromatin globule. If the self-attraction strength exceeds a threshold, the chromatin dynamics becomes glassy, and the corresponding interaction network freezes. By modifying the epigenetic read-write process according to more biologically inspired assumptions, our polymer model with recoloring recapitulates the ultrasensitive response of epigenetic switches to perturbations and accounts for long-lived multidomain conformations, strikingly similar to the topologically associating domains observed in eukaryotic chromosomes.
引用
收藏
页数:15
相关论文
共 83 条
[1]  
Alberts B., 2014, MOL BIOL CELL, P1464
[2]   A Polycomb-based switch underlying quantitative epigenetic memory [J].
Angel, Andrew ;
Song, Jie ;
Dean, Caroline ;
Howard, Martin .
NATURE, 2011, 476 (7358) :105-+
[3]   Mechanistic stochastic model of histone modification pattern formation [J].
Anink-Groenen, Lisette C. M. ;
Maarleveld, Timo R. ;
Verschure, Pernette J. ;
Bruggeman, Frank J. .
EPIGENETICS & CHROMATIN, 2014, 7
[4]   Regulation of gene transcription by Polycomb proteins [J].
Aranda, Sergi ;
Mas, Gloria ;
Di Croce, Luciano .
SCIENCE ADVANCES, 2015, 1 (11)
[5]   X-chromosome inactivation: Counting, choice and initiation [J].
Avner, P ;
Heard, E .
NATURE REVIEWS GENETICS, 2001, 2 (01) :59-67
[6]   A polymer model explains the complexity of large-scale chromatin folding [J].
Barbieri, Mariano ;
Fraser, James ;
Lavitas, Liron-Mark ;
Chotalia, Mita ;
Dostie, Josee ;
Pombo, Ana ;
Nicodemi, Mario .
NUCLEUS, 2013, 4 (04) :267-273
[7]   Complexity of chromatin folding is captured by the strings and binders switch model [J].
Barbieri, Mariano ;
Chotalia, Mita ;
Fraser, James ;
Lavitas, Liron-Mark ;
Dostie, Josee ;
Pombo, Ana ;
Nicodemi, Mario .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (40) :16173-16178
[8]   HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore [J].
Barnhart, Meghan C. ;
Kuich, P. Henning J. L. ;
Stellfox, Madison E. ;
Ward, Jared A. ;
Bassett, Emily A. ;
Black, Ben E. ;
Foltz, Daniel R. .
JOURNAL OF CELL BIOLOGY, 2011, 194 (02) :229-243
[9]   Fast signals and slow marks: the dynamics of histone modifications [J].
Barth, Teresa K. ;
Imhof, Axel .
TRENDS IN BIOCHEMICAL SCIENCES, 2010, 35 (11) :618-626
[10]   Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells [J].
Baum, Michael ;
Erdel, Fabian ;
Wachsmuth, Malte ;
Rippe, Karsten .
NATURE COMMUNICATIONS, 2014, 5