Identifying the Genetic Variation of Gene Expression Using Gene Sets: Application of Novel Gene Set eQTL Approach to PharmGKB and KEGG

被引:6
作者
Abo, Ryan [1 ]
Jenkins, Gregory D. [2 ]
Wang, Liewei [1 ]
Fridley, Brooke L. [2 ]
机构
[1] Mayo Clin, Dept Mol Pharmacol & Expt Therapeut, Div Clin Pharmacol, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Hlth Sci Res, Rochester, MN USA
来源
PLOS ONE | 2012年 / 7卷 / 08期
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; BIOLOGICAL PATHWAYS; VARIANTS; RISK; PHARMACOGENOMICS; GEMCITABINE; DISCOVERY; DISEASE; LOCI; SNPS;
D O I
10.1371/journal.pone.0043301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic variation underlying the regulation of mRNA gene expression in humans may provide key insights into the molecular mechanisms of human traits and complex diseases. Current statistical methods to map genetic variation associated with mRNA gene expression have typically applied standard linkage and/or association methods; however, when genome-wide SNP and mRNA expression data are available performing all pair wise comparisons is computationally burdensome and may not provide optimal power to detect associations. Consideration of different approaches to account for the high dimensionality and multiple testing issues may provide increased efficiency and statistical power. Here we present a novel approach to model and test the association between genetic variation and mRNA gene expression levels in the context of gene sets (GSs) and pathways, referred to as gene set - expression quantitative trait loci analysis (GS-eQTL). The method uses GSs to initially group SNPs and mRNA expression, followed by the application of principal components analysis (PCA) to collapse the variation and reduce the dimensionality within the GSs. We applied GS-eQTL to assess the association between SNP and mRNA expression level data collected from a cell-based model system using PharmGKB and KEGG defined GSs. We observed a large number of significant GS-eQTL associations, in which the most significant associations arose between genetic variation and mRNA expression from the same GS. However, a number of associations involving genetic variation and mRNA expression from different GSs were also identified. Our proposed GS-eQTL method effectively addresses the multiple testing limitations in eQTL studies and provides biological context for SNP-expression associations.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Genetic Variation at the FTO Locus Influences RBL2 Gene Expression
    Jowett, Jeremy B. M.
    Curran, Joanne E.
    Johnson, Matthew P.
    Carless, Melanie A.
    Goering, Harald H. H.
    Dyer, Thomas D.
    Cole, Shelley A.
    Comuzzie, Anthony G.
    MacCluer, Jean W.
    Moses, Eric K.
    Blangero, John
    DIABETES, 2010, 59 (03) : 726 - 732
  • [42] Interactions between genetic variation and cellular environment in skeletal muscle gene expression
    Taylor, D. Leland
    Knowles, David A.
    Scott, Laura J.
    Ramirez, Andrea H.
    Casale, Francesco Paolo
    Wolford, Brooke N.
    Guan, Li
    Varshney, Arushi
    Albanus, Ricardo D'Oliveira
    Parker, Stephen C. J.
    Narisu, Narisu
    Chines, Peter S.
    Erdos, Michael R.
    Welch, Ryan P.
    Kinnunen, Leena
    Saramies, Jouko
    Sundvall, Jouko
    Lakka, Timo A.
    Laakso, Markku
    Tuomilehto, Jaakko
    Koistinen, Heikki A.
    Stegle, Oliver
    Boehnke, Michael
    Birney, Ewan
    Collins, Francis S.
    PLOS ONE, 2018, 13 (04):
  • [43] Exploring Data From Genetic Association Studies Using Bayesian Variable Selection and the Dirichlet Process: Application to Searching for Gene Gene Patterns
    Papathomas, Michail
    Molitor, John
    Hoggart, Clive
    Hastie, David
    Richardson, Sylvia
    GENETIC EPIDEMIOLOGY, 2012, 36 (06) : 663 - 674
  • [44] Gene biomarker discovery at different stages of Alzheimer using gene co-expression network approach
    Zakeri, Negar Sadat Soleimani
    Pashazadeh, Saeid
    MotieGhader, Habib
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [45] Inclusion of textual documentation in the analysis of multidimensional data sets:: Application to gene expression data
    Raychaudhuri, S
    Schütze, H
    Altman, RB
    MACHINE LEARNING, 2003, 52 (1-2) : 119 - 145
  • [46] Prioritization of SNPs for genome-wide association studies using an interaction model of genetic variation, gene expression, and trait variation
    Paik, Hyojung
    Kim, Junho
    Lee, Sunjae
    Heo, Hyoung-Sam
    Hur, Cheol-Goo
    Lee, Doheon
    MOLECULES AND CELLS, 2012, 33 (04) : 351 - 361
  • [47] Using Principal Components of Genetic Variation for Robust and Powerful Detection of Gene-Gene Interactions in Case-Control and Case-Only Studies
    Hattacharjee, Samsiddhi
    Wang, Zhaoming
    Ciampa, Julia
    Kraft, Peter
    Chanock, Stephen
    Yu, Kai
    Chatterjee, Nilanjan
    AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (03) : 331 - 342
  • [48] Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains
    Mostafavi, Sara
    Ortiz-Lopez, Adriana
    Bogue, Molly A.
    Hattori, Kimie
    Pop, Cristina
    Koller, Daphne
    Mathis, Diane
    Benoist, Christophe
    JOURNAL OF IMMUNOLOGY, 2014, 193 (09) : 4485 - 4496
  • [49] Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate
    Jasinska, Anna J.
    Zelaya, Ivette
    Service, Susan K.
    Peterson, Christine B.
    Cantor, Rita M.
    Choi, Oi-Wa
    DeYoung, Joseph
    Eskin, Eleazar
    Fairbanks, Lynn A.
    Fears, Scott
    Furterer, Allison E.
    Huang, Yu S.
    Ramensky, Vasily
    Schmitt, Christopher A.
    Svardal, Hannes
    Jorgensen, Matthew J.
    Kaplan, Jay R.
    Villar, Diego
    Aken, Bronwen L.
    Flicek, Paul
    Nag, Rishi
    Wong, Emily S.
    Blangero, John
    Dyer, Thomas D.
    Bogomolov, Marina
    Benjamini, Yoav
    Weinstock, George M.
    Dewar, Ken
    Sabatti, Chiara
    Wilson, Richard K.
    Jentsch, J. David
    Warren, Wesley
    Coppola, Giovanni
    Woods, Roger P.
    Freimer, Nelson B.
    NATURE GENETICS, 2017, 49 (12) : 1714 - +
  • [50] Association of Genetic Variation with Gene Expression and Protein Abundance within the Natriuretic Peptide Pathway
    David E. Lanfear
    Bipin Sunkara
    Jia Li
    Sharad Rastogi
    Ramesh C. Gupta
    Badri Padhukasahasram
    L. Keoki Williams
    Hani N. Sabbah
    Journal of Cardiovascular Translational Research, 2013, 6 : 826 - 833