Identifying the Genetic Variation of Gene Expression Using Gene Sets: Application of Novel Gene Set eQTL Approach to PharmGKB and KEGG

被引:6
|
作者
Abo, Ryan [1 ]
Jenkins, Gregory D. [2 ]
Wang, Liewei [1 ]
Fridley, Brooke L. [2 ]
机构
[1] Mayo Clin, Dept Mol Pharmacol & Expt Therapeut, Div Clin Pharmacol, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Hlth Sci Res, Rochester, MN USA
来源
PLOS ONE | 2012年 / 7卷 / 08期
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; BIOLOGICAL PATHWAYS; VARIANTS; RISK; PHARMACOGENOMICS; GEMCITABINE; DISCOVERY; DISEASE; LOCI; SNPS;
D O I
10.1371/journal.pone.0043301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic variation underlying the regulation of mRNA gene expression in humans may provide key insights into the molecular mechanisms of human traits and complex diseases. Current statistical methods to map genetic variation associated with mRNA gene expression have typically applied standard linkage and/or association methods; however, when genome-wide SNP and mRNA expression data are available performing all pair wise comparisons is computationally burdensome and may not provide optimal power to detect associations. Consideration of different approaches to account for the high dimensionality and multiple testing issues may provide increased efficiency and statistical power. Here we present a novel approach to model and test the association between genetic variation and mRNA gene expression levels in the context of gene sets (GSs) and pathways, referred to as gene set - expression quantitative trait loci analysis (GS-eQTL). The method uses GSs to initially group SNPs and mRNA expression, followed by the application of principal components analysis (PCA) to collapse the variation and reduce the dimensionality within the GSs. We applied GS-eQTL to assess the association between SNP and mRNA expression level data collected from a cell-based model system using PharmGKB and KEGG defined GSs. We observed a large number of significant GS-eQTL associations, in which the most significant associations arose between genetic variation and mRNA expression from the same GS. However, a number of associations involving genetic variation and mRNA expression from different GSs were also identified. Our proposed GS-eQTL method effectively addresses the multiple testing limitations in eQTL studies and provides biological context for SNP-expression associations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Genetic variation contributes to gene expression response in ischemic stroke: an eQTL study
    Amini, Hajar
    Shroff, Natasha
    Stamova, Boryana
    Ferino, Eva
    Carmona-Mora, Paulina
    Zhan, Xinhua
    Sitorus, Preston P.
    Hull, Heather
    Jickling, Glen C.
    Sharp, Frank R.
    Ander, Bradley P.
    ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2020, 7 (09): : 1648 - 1660
  • [2] Trans-eQTL mapping in gene sets identifies network effects of genetic variants
    Wang, Lili
    Babushkin, Nikita
    Liu, Zhonghua
    Liu, Xuanyao
    CELL GENOMICS, 2024, 4 (04):
  • [3] Gene expression and genetic variation in human atria
    Lin, Honghuang
    Dolmatova, Elena V.
    Morley, Michael P.
    Lunetta, Kathryn L.
    McManus, David D.
    Magnani, Jared W.
    Margulies, Kenneth B.
    Hakonarson, Hakon
    del Monte, Federica
    Benjamin, Emelia J.
    Cappola, Thomas P.
    Ellinor, Patrick T.
    HEART RHYTHM, 2014, 11 (02) : 266 - 271
  • [4] Integromic Analysis of Genetic Variation and Gene Expression Identifies Networks for Cardiovascular Disease Phenotypes
    Yao, Chen
    Chen, Brian H.
    Joehanes, Roby
    Otlu, Burcak
    Zhang, Xiaoling
    Liu, Chunyu
    Huan, Tianxiao
    Tastan, Oznur
    Cupples, L. Adrienne
    Meigs, James B.
    Fox, Caroline S.
    Freedman, Jane E.
    Courchesne, Paul
    O'Donnell, Christopher J.
    Munson, Peter J.
    Keles, Sunduz
    Levy, Daniel
    CIRCULATION, 2015, 131 (06) : 536 - U247
  • [5] MRPL53, a New Candidate Gene for Orofacial Clefting, Identified Using an eQTL Approach
    Masotti, C.
    Brito, L. A.
    Nica, A. C.
    Ludwig, K. U.
    Nunes, K.
    Savastano, C. P.
    Malcher, C.
    Ferreira, S. G.
    Kobayashi, G. S.
    Bueno, D. F.
    Alonso, N.
    Franco, D.
    Rojas-Martinez, A.
    dos Santos, S. E.
    Galante, P. A.
    Meyer, D.
    Huenemeier, T.
    Mangold, E.
    Dermitzakis, E. T.
    Passos-Bueno, M. R.
    JOURNAL OF DENTAL RESEARCH, 2018, 97 (01) : 33 - 40
  • [6] Towards the Genetic Architecture of Complex Gene Expression Traits: Challenges and Prospects for eQTL Mapping in Humans
    Lee, Chaeyoung
    GENES, 2022, 13 (02)
  • [7] The influence of genetic variation on gene expression
    Williams, Rohan B. H.
    Chan, Eva K. F.
    Cowley, Mark J.
    Little, Peter F. R.
    GENOME RESEARCH, 2007, 17 (12) : 1707 - 1716
  • [8] Noncoding Genetic Variation and Gene Expression
    Roberts, Jason D.
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2018, 11 (03):
  • [9] Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA
    Shang, Lulu
    Smith, Jennifer A.
    Zhao, Wei
    Kho, Minjung
    Turner, Stephen T.
    Mosley, Thomas H.
    Kardia, Sharon L. R.
    Zhou, Xiang
    AMERICAN JOURNAL OF HUMAN GENETICS, 2020, 106 (04) : 496 - 512
  • [10] A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data
    Seok, Junhee
    Davis, Ronald W.
    Xiao, Wenzhong
    PLOS ONE, 2015, 10 (05):