Bifurcation problems for the p-Laplacian in R(N)

被引:56
作者
Drabek, P [1 ]
Huang, YX [1 ]
机构
[1] MEMPHIS STATE UNIV,DEPT MATH SCI,MEMPHIS,TN 38152
关键词
p-Laplacian; global positive solutions; weighted spaces;
D O I
10.1090/S0002-9947-97-01788-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the bifurcation problem -div (\del U\(p-2)del u)=lambda g(x)\u\(p-2)u+f(lambda,x,u), in R(N) with p > 1. We show that a continuum of positive solutions bifurcates out from the principal eigenvalue lambda(1) of the problem -div (\del u\(p-2)del u)=lambda g(x)\u\(p-2)u. Here both functions f and g may change sign.
引用
收藏
页码:171 / 188
页数:18
相关论文
共 26 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
Allegretto W., 1995, FUNKC EKVACIOJ-SER I, V38, P233
[3]  
ANANE A, 1987, CR ACAD SCI I-MATH, V305, P725
[4]  
Binding P.A., 1995, DIFFERENTIAL INTEGRA, V8, P415
[5]  
Browder F. E., 1969, J. Funct. Anal., V3, P217
[6]   STRUCTURE OF SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J].
DANCER, EN .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (11) :1069-1076
[7]   GLOBAL BIFURCATION FROM THE EIGENVALUES OF THE P-LAPLACIAN [J].
DELPINO, MA ;
MANASEVICH, RF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (02) :226-251
[8]   ON THE GLOBAL BIFURCATION FOR A CLASS OF DEGENERATE EQUATIONS [J].
DRABEK, P .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 159 :1-16
[9]   NONLINEAR EIGENVALUE PROBLEM FOR P-LAPLACIAN IN R(N) [J].
DRABEK, P .
MATHEMATISCHE NACHRICHTEN, 1995, 173 :131-139
[10]  
Drabek P, 1992, Pitman Research Notes in Mathematics, V264