Time-resolved fluorescence anisotropy spectroscopy was applied to study the interaction between a peptide truncated from the binding site of tumor suppressor p53 protein and the DNAs covalently labeled with 6-carboxyfluorescein (FAM) dye. Fluorescence intensity quenching and changes of anisotropy decay lifetime were monitored when FAM labeled DNA formed complex with the peptide. The results demonstrated that the sequence of DNA could not define the binding specificity between the peptide and DNA. But the anisotropy decay of FAM can be used to examine the binding affinity of the peptide to DNA. The fluorescent dynamics of FAM can also be used to represent the rigidity of the complex formed between the peptide and DNA.