Hybrid approach of selecting hyperparameters of support vector machine for regression

被引:54
作者
Jeng, Jin-Tsong [1 ]
机构
[1] Natl Formosa Univ, Dept Comp Sci & Informat Engn, Huwei Jen 632, Taiwan
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2006年 / 36卷 / 03期
关键词
competitive agglomeration (CA) clustering algorithm; hyperparameters; repeated support vector machine for regression (RSVR) approach; support vector machine for regression (SVR);
D O I
10.1109/TSMCB.2005.861067
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To select the hyperparameters of the support vector machine for regression (SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian kernel function and the epsilon value of Vapnik's epsilon-insensitive loss function. The proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm and a repeated SVR (RSVR) approach. Since the CA clustering algorithm is used to find the nearly "optimal" number of clusters and the centers of clusters in the clustering process, the CA clustering algorithm is applied to select the Gaussian kernel parameter. Additionally, an RSVR approach that relies on the standard deviation of a training error is proposed to obtain an epsilon in the loss function. Finally, two functions, one real data set (i.e., a time series of quarterly unemployment rate for West Germany) and an identification of nonlinear plant are used to verify, the usefulness of the hybrid approach.
引用
收藏
页码:699 / 709
页数:11
相关论文
共 26 条
[1]   Experimentally optimal ν in support vector regression for different noise models and parameter settings [J].
Chalimourda, A ;
Schölkopf, B ;
Smola, AJ .
NEURAL NETWORKS, 2004, 17 (01) :127-141
[2]   Choosing multiple parameters for support vector machines [J].
Chapelle, O ;
Vapnik, V ;
Bousquet, O ;
Mukherjee, S .
MACHINE LEARNING, 2002, 46 (1-3) :131-159
[3]   Practical selection of SVM parameters and noise estimation for SVM regression [J].
Cherkassky, V ;
Ma, YQ .
NEURAL NETWORKS, 2004, 17 (01) :113-126
[4]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[5]  
Cherkassky V, 2002, LECT NOTES COMPUT SC, V2415, P687
[6]  
Chuang CC, 2004, NEUROCOMPUTING, V56, P123, DOI [10.1016/S0925-2312(03)00436-3, 10.1016/S0925-2312(03 )00436-3]
[7]   Robust support vector regression networks for function approximation with outliers [J].
Chuang, CC ;
Su, SF ;
Jeng, JT ;
Hsiao, CC .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (06) :1322-1330
[8]   Fuzzy function approximation with ellipsoidal rules [J].
Dickerson, JA ;
Kosko, B .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (04) :542-560
[9]  
DUAN K, 2001, CD0111 NAT U
[10]  
Evans M., 2000, STAT DISTRIBUTIONS