Variations and estimators for self-similarity parameter of sub-fractional Brownian motion via Malliavin calculus

被引:3
作者
Liu, Junfeng [1 ]
Tang, Donglei [2 ]
Cang, Yuquan [1 ]
机构
[1] Nanjing Audit Univ, Dept Stat, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Audit Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Subfractional Brownian motion; multiple stochastic integral; Malliavin calculus; quadratic variation; selfsimilarity; statistical estimation; MULTIPLE STOCHASTIC INTEGRALS; CENTRAL LIMIT-THEOREMS; RESPECT; SYSTEMS; TIME;
D O I
10.1080/03610926.2013.819923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using multiple stochastic integrals and the Malliavin calculus, we analyze the asymptotic behavior of the adjusted quadratic variation for a sub-fractional Brownian motion. We apply our results to construct strongly consistent statistical estimators for the self-similarity of sub-fractional Brownian motion.
引用
收藏
页码:3276 / 3289
页数:14
相关论文
共 32 条
[1]  
Beran J., 1994, Statistics for Long-Memory Processes
[2]   Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (01) :1-18
[3]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[4]   Fractional Brownian density process and its self-intersection local time of order k [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (03) :717-739
[5]   Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems [J].
Bojdecki, Tomasz ;
Gorostiza, Luis G. ;
Talarczyk, Anna .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :161-172
[6]   Variations and Hurst index estimation for a Rosenblatt process using longer filters [J].
Chronopoulou, Alexandra ;
Viens, Frederi G. ;
Tudor, Ciprian A. .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :1393-1435
[7]  
Coeurjolly J-F., 2001, Stat. Inference for Stoch. Proc, V4, P199, DOI [DOI 10.1023/A:1017507306245, 10.1023/A:1017507306245]
[8]   A series expansion of fractional Brownian motion [J].
Dzhaparidze, K ;
van Zanten, H .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 130 (01) :39-55
[9]   NONCENTRAL LIMIT THEOREM FOR THE CUBIC VARIATION OF A CLASS OF SELF-SIMILAR STOCHASTIC PROCESSES [J].
Es-Sebaiy, K. ;
Tudor, C. A. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (03) :411-431
[10]   Limits for weighted p-variations and likewise functionals of fractional diffusions with drift [J].
Leon, Jose ;
Ludena, Carenne .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) :271-296