III-V nanowire arrays: growth and light interaction

被引:90
作者
Heiss, M. [1 ]
Russo-Averchi, E. [1 ]
Dalmau-Mallorqui, A. [1 ]
Tuetuencueoglu, G. [1 ]
Matteini, F. [1 ]
Rueffer, D. [1 ]
Conesa-Boj, S. [1 ]
Demichel, O. [1 ]
Alarcon-Llado, E. [1 ]
Fontcuberta i Morral, A. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Semicond Mat, CH-1015 Lausanne, Switzerland
关键词
RAMAN-SCATTERING; GAAS NANOWIRES; SOLAR-CELLS; ABSORPTION; EFFICIENCY; SILICON; HETEROSTRUCTURES; ORDER; 1D;
D O I
10.1088/0957-4484/25/1/014015
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Semiconductor nanowire arrays are reproducible and rational platforms for the realization of high performing designs of light emitting diodes and photovoltaic devices. In this paper we present an overview of the growth challenges of III-V nanowire arrays obtained by molecular beam epitaxy and the design of III-V nanowire arrays on silicon for solar cells. While InAs tends to grow in a relatively straightforward manner on patterned (111) Si substrates, GaAs nanowires remain more challenging; success depends on the cleaning steps, annealing procedure, pattern design and mask thickness. Nanowire arrays might also be used for next generation solar cells. We discuss the photonic effects derived from the vertical configuration of nanowires standing on a substrate and how these are beneficial for photovoltaics. Finally, due to the special interaction of light with standing nanowires we also show that the Raman scattering properties of standing nanowires are modified. This result is important for fundamental studies on the structural and functional properties of nanowires.
引用
收藏
页数:9
相关论文
共 72 条
[1]   Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy [J].
Bauer, Benedikt ;
Rudolph, Andreas ;
Soda, Marcello ;
Fontcuberta i Morral, Anna ;
Zweck, Josef ;
Schuh, Dieter ;
Reiger, Elisabeth .
NANOTECHNOLOGY, 2010, 21 (43)
[2]   Trap-Assisted Tunneling in Si-InAs Nanowire Heterojunction Tunnel Diodes [J].
Bessire, Cedric D. ;
Bjoerk, Mikael T. ;
Schmid, Heinz ;
Schenk, Andreas ;
Reuter, Kathleen B. ;
Riel, Heike .
NANO LETTERS, 2011, 11 (10) :4195-4199
[3]   Synergetic nanowire growth [J].
Borgstrom, Magnus T. ;
Immink, George ;
Ketelaars, Bas ;
Algra, Rienk ;
Bakkers, Erik P. A. M. .
NATURE NANOTECHNOLOGY, 2007, 2 (09) :541-544
[4]   On the Raman scattering from semiconducting nanowires [J].
Cao, L. ;
Laim, L. ;
Valenzuela, P. D. ;
Nabet, B. ;
Spanier, J. E. .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (06) :697-703
[5]   Optical Coupling of Deep-Subwavelength Semiconductor Nanowires [J].
Cao, Linyou ;
Fan, Pengyu ;
Brongersma, Mark L. .
NANO LETTERS, 2011, 11 (04) :1463-1468
[6]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]
[7]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[8]   Critical diameter for III-V nanowires grown on lattice-mismatched substrates [J].
Chuang, Linus C. ;
Moewe, Michael ;
Chase, Chris ;
Kobayashi, Nobuhiko P. ;
Chang-Hasnain, Connie ;
Crankshaw, Shanna .
APPLIED PHYSICS LETTERS, 2007, 90 (04)
[9]   Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy [J].
Colombo, C. ;
Spirkoska, D. ;
Frimmer, M. ;
Abstreiter, G. ;
Morral, A. Fontcuberta I. .
PHYSICAL REVIEW B, 2008, 77 (15)
[10]   Engineering light absorption in single-nanowire solar cells with metal nanoparticles [J].
Colombo, Carlo ;
Krogstrup, Peter ;
Nygard, Jesper ;
Brongersma, Mark L. ;
Fontcuberta i Morral, Anna .
NEW JOURNAL OF PHYSICS, 2011, 13