Warped products of metric spaces of curvature bounded from above

被引:21
作者
Chen, CH [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhu, Taiwan
关键词
D O I
10.1090/S0002-9947-99-02154-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we extend the idea of warped products, which was previously defined on smooth Riemannian manifolds, to geodesic metric spaces and prove the analogue of the theorems on spaces with curvature bounded from above.
引用
收藏
页码:4727 / 4740
页数:14
相关论文
共 20 条
[1]  
Alexander S., 1990, ENSEIGN MATH, V36, P309
[2]   GEOMETRIC CURVATURE BOUNDS IN RIEMANNIAN-MANIFOLDS WITH BOUNDARY [J].
ALEXANDER, SB ;
BERG, ID ;
BISHOP, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) :703-716
[3]  
Alexandrov A.D., 1951, T MAT I STEKLOVA, V38, P5
[4]  
Alexandrov A.D., 1957, SCHRIFTENREIHE FORSC, V1, P33
[5]  
BERESTOVSKIJ VN, 1993, ENCYCL MATH SCI, V70, P184
[6]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[7]  
BRIDSON M, IN PRESS METRIC SPAC
[8]   SPACES WITH NON-POSITIVE CURVATURE [J].
BUSEMANN, H .
ACTA MATHEMATICA, 1948, 80 (04) :259-310
[9]  
BUYALO S, 1995, LECT NOTES SPACES NO
[10]  
CHEN CH, IN PRESS T AM MATH S