Robust Moving Horizon State Estimation: Application to Bioprocesses

被引:0
|
作者
Tebbani, Sihem [1 ]
Le Brusquet, Laurent [2 ]
Petre, Emil [3 ]
Selisteanu, Dan [3 ]
机构
[1] SUPELEC, Syst Sci E3S, Dept Automat Control, F-91192 Gif Sur Yvette, France
[2] SUPELEC, Syst Sci E3S, Signal Proc & Elect Syst, F-91192 Gif Sur Yvette, France
[3] Univ Craiova, Dept Automat Control Elect & Mechatron, Craiova, Romania
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a robust nonlinear receding-horizon observer is proposed for the estimation of cellular concentration in a bioreactor. In the presence of uncertainties on the model parameter or on the initial state of the system, this estimation problem can lead to poor estimation performance. A min-max optimization solution can be used to increase the robustness of the observer in the presence of parameter uncertainties. This solution assumes that each model parameter belongs to an interval. The paper proposes an alternative modeling for these parameters: A Gaussian model is assumed in order to take into account the correlation between parameters. As the confidence region for the parameters is now an ellipsoid, the max step in the min-max problem is replaced by more tractable statistics. Expected value has been tested for its simplicity. For robustness requirements a statistic considering the variance of the estimation has also been developed. Numerical simulations illustrate the efficiency of the proposed estimation scheme.
引用
收藏
页码:539 / 544
页数:6
相关论文
共 50 条
  • [1] Moving Horizon State Estimation for a bioprocesses modelled by a neural network
    Flaus, JM
    Boillereaux, L
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 1997, 19 (05) : 263 - 270
  • [2] Robust Moving Horizon State Estimation for Nonlinear Systems
    Liu, Jinfeng
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 253 - 258
  • [3] A moving horizon state and parameter estimation scheme with guaranteed robust convergence
    Schiller, Julian D.
    Mueller, Matthias A.
    IFAC PAPERSONLINE, 2023, 56 (02): : 6759 - 6764
  • [4] Robust state estimation for power systems via moving horizon strategy
    Chen, Tengpeng
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2017, 10 : 46 - 54
  • [5] Robust moving horizon state observer
    Chu, D.
    Chen, T.
    Marquez, H. J.
    INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (10) : 1636 - 1650
  • [6] On-line state estimation of bioprocesses with full horizon observers
    Bogaerts, P
    Hanus, R
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 56 (4-5) : 425 - 441
  • [7] Robust Bayesian inference for moving horizon estimation☆
    Cao, Wenhan
    Liu, Chang
    Lan, Zhiqian
    Li, Shengbo Eben
    Pan, Wei
    Alessandri, Angelo
    AUTOMATICA, 2025, 173
  • [8] Nonlinear moving horizon state estimation
    Rao, CV
    Rawlings, JB
    NONLINEAR MODEL PREDICTIVE CONTROL, 2000, 26 : 45 - 69
  • [9] A sequential convex moving horizon estimator for bioprocesses?
    Taylor, Josh A.
    Rapaport, Alain
    Dochain, Denis
    JOURNAL OF PROCESS CONTROL, 2022, 116 : 19 - 24
  • [10] Application of partitioned-based moving horizon estimation in power system state estimation
    School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
    不详
    637459, Singapore
    Asia-Pacific Pow. Energy Eng. Conf., APPEEC,