On the identifiability of metabolic network models

被引:26
作者
Berthoumieux, Sara [1 ]
Brilli, Matteo [2 ]
Kahn, Daniel [2 ]
de Jong, Hidde [1 ]
Cinquemani, Eugenio [1 ]
机构
[1] INRIA Grenoble Rhone Alpes, Montbonnot St Martin, France
[2] Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, INRA,UMR 5558, F-69622 Villeurbanne, France
关键词
Systems biology; Metabolic network modeling; Parameter estimation; Structural and practical identifiability; Principal component analysis; Singular value decomposition; Escherichia coli carbon metabolism; STRUCTURAL IDENTIFIABILITY; PARAMETER IDENTIFIABILITY; GLOBAL IDENTIFIABILITY; NONLINEAR-SYSTEMS; SIMULATION; LAW;
D O I
10.1007/s00285-012-0614-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A major problem for the identification of metabolic network models is parameter identifiability, that is, the possibility to unambiguously infer the parameter values from the data. Identifiability problems may be due to the structure of the model, in particular implicit dependencies between the parameters, or to limitations in the quantity and quality of the available data. We address the detection and resolution of identifiability problems for a class of pseudo-linear models of metabolism, so-called linlog models. Linlog models have the advantage that parameter estimation reduces to linear or orthogonal regression, which facilitates the analysis of identifiability. We develop precise definitions of structural and practical identifiability, and clarify the fundamental relations between these concepts. In addition, we use singular value decomposition to detect identifiability problems and reduce the model to an identifiable approximation by a principal component analysis approach. The criterion is adapted to real data, which are frequently scarce, incomplete, and noisy. The test of the criterion on a model with simulated data shows that it is capable of correctly identifying the principal components of the data vector. The application to a state-of-the-art dataset on central carbon metabolism in Escherichia coli yields the surprising result that only out of reactions, and out of parameters, are identifiable. This underlines the practical importance of identifiability analysis and model reduction in the modeling of large-scale metabolic networks. Although our approach has been developed in the context of linlog models, it carries over to other pseudo-linear models, such as generalized mass-action (power-law) models. Moreover, it provides useful hints for the identifiability analysis of more general classes of nonlinear models of metabolism.
引用
收藏
页码:1795 / 1832
页数:38
相关论文
共 43 条
  • [1] Systems biology: parameter estimation for biochemical models
    Ashyraliyev, Maksat
    Fomekong-Nanfack, Yves
    Kaandorp, Jaap A.
    Blom, Joke G.
    [J]. FEBS JOURNAL, 2009, 276 (04) : 886 - 902
  • [2] DAISY:: A new software tool to test global identifiability of biological and physiological systems
    Bellu, Giuseppina
    Saccomani, Maria Pia
    Audoly, Stefania
    D'Angio, Leontina
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 88 (01) : 52 - 61
  • [3] Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
    Bennett, Bryson D.
    Kimball, Elizabeth H.
    Gao, Melissa
    Osterhout, Robin
    Van Dien, Stephen J.
    Rabinowitz, Joshua D.
    [J]. NATURE CHEMICAL BIOLOGY, 2009, 5 (08) : 593 - 599
  • [4] Berthoumieux S, 2012, P 16 IFAC S SYST ID, V16, P1719
  • [5] Identification of metabolic network models from incomplete high-throughput datasets
    Berthoumieux, Sara
    Brilli, Matteo
    de Jong, Hidde
    Kahn, Daniel
    Cinquemani, Eugenio
    [J]. BIOINFORMATICS, 2011, 27 (13) : I186 - I195
  • [6] A quantitative approach to catabolite repression in Escherichia coli
    Bettenbrock, K
    Fischer, S
    Kremling, A
    Jahreis, K
    Sauter, T
    Gilles, ED
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (05) : 2578 - 2584
  • [7] Brand M, 2002, LECT NOTES COMPUT SC, V2350, P707
  • [8] GLOBAL IDENTIFIABILITY OF THE PARAMETERS OF NONLINEAR-SYSTEMS WITH SPECIFIED INPUTS - A COMPARISON OF METHODS
    CHAPPELL, MJ
    GODFREY, KR
    VAJDA, S
    [J]. MATHEMATICAL BIOSCIENCES, 1990, 102 (01) : 41 - 73
  • [9] Classic and contemporary approaches to modeling biochemical reactions
    Chen, William W.
    Niepel, Mario
    Sorger, Peter K.
    [J]. GENES & DEVELOPMENT, 2010, 24 (17) : 1861 - 1875
  • [10] GenSSI: a software toolbox for structural identifiability analysis of biological models
    Chis, Oana
    Banga, Julio R.
    Balsa-Canto, Eva
    [J]. BIOINFORMATICS, 2011, 27 (18) : 2610 - 2611