Combustion Behavior of Relatively Large Pulverized Biomass Particles at Rapid Heating Rates

被引:42
作者
Mock, Chinsung [1 ]
Lee, Hookyung [2 ]
Choi, Sangmin [2 ]
Manovic, Vasilije [1 ]
机构
[1] Cranfield Univ, Ctr Combust & Carbon Capture & Storage, Cranfield MK43 0AL, Beds, England
[2] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daejeon, South Korea
关键词
COAL-PARTICLE; DEVOLATILIZATION; PYROLYSIS; IGNITION; RADIATION; O-2/N-2; MOTION; SOOT;
D O I
10.1021/acs.energyfuels.6b01457
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A pulverized solid fuel particle in a hot gas stream appears to have different characteristic behaviors at several stages, including heat-up, release of volatile matter, gas phase, and solid combustion. The characteristics of these stages may vary distinctly depending on devolatilization rate, the particle temperature history, and its chemical and physical properties. Biomass particles manifest different combustion behavior from that of burning coal particles under the same combustion conditions because they contain more volatiles (less fixed carbon), and they have a relatively lower particle density due to their fibrous structure. This paper presents an experimental study of burning behavior of different types of biomass particles (torrefied wood, coffee waste, and sewage sludge). The main experimental parameters gas temperatures of 1090 and 1340 K, and O-2 concentrations ranging from 10% to 40% were employed to investigate the burning of biomass through a direct-observation approach using a high-speed photography technique at 7000 frames/s. In the case of firing/cofiring, biomass particles must be larger than the coal particles in order to achieve an equivalent thermal balance due to the higher energy density of coal. Therefore, the selected biomass samples were in the size range from 150-215 mu m to 425-500 mu m. The experimental setup has a cross-flow configuration for particle injection in order to enhance interaction between the particle and the two different streams a cold carrier gas at 298 K, and upward-flowing postcombustion gases. It is believed that the employed experimental conditions are similar to those in a realistic furnace with a rapid heating rate of 10(5) K/s. The experimentally significant results, including the effective radii of the volatile flames, degrees of flame intensity, and the maximum size of a particle, are important for validation of models of single biomass particle combustion.
引用
收藏
页码:10809 / 10822
页数:14
相关论文
共 47 条
[1]   Biomass energy in the world, use of biomass and potential trends [J].
Balat, M ;
Ayar, G .
ENERGY SOURCES, 2005, 27 (10) :931-940
[2]   Understanding pulverised coal, biomass and waste combustion - A brief overview [J].
Barnes, D. Ian .
APPLIED THERMAL ENGINEERING, 2015, 74 :89-95
[3]   Single-coal-particle combustion in O2/N2 and O2/CO2 environments [J].
Bejarano, Paula A. ;
Levendis, Yiannis A. .
COMBUSTION AND FLAME, 2008, 153 (1-2) :270-287
[4]   Effects of intraparticle heat and mass transfer on biomass devolatilization: Experimental results and model predictions [J].
Bharadwaj, A ;
Baxter, LL ;
Robinson, AL .
ENERGY & FUELS, 2004, 18 (04) :1021-1031
[5]   Characterization of high heating rate chars of biomass fuels [J].
Biagini, E. ;
Simone, M. ;
Tognotti, L. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 :2043-2050
[6]   MODELING COAL PARTICLE BEHAVIOR UNDER SIMULTANEOUS DEVOLATILIZATION AND COMBUSTION [J].
CHOI, S ;
KRUGER, CH .
COMBUSTION AND FLAME, 1985, 61 (02) :131-144
[7]   Combustion characteristics of different biomass fuels [J].
Demirbas, A .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2004, 30 (02) :219-230
[8]   Hydrocarbons from pyrolysis and hydrolysis processes of biomass [J].
Demirbas, A .
ENERGY SOURCES, 2003, 25 (01) :67-75
[9]   Influences of physical properties on biomass devolatilization characteristics [J].
DiBlasi, C .
FUEL, 1997, 76 (10) :957-964
[10]   Soot in coal combustion systems [J].
Fletcher, TH ;
Ma, JL ;
Rigby, JR ;
Brown, AL ;
Webb, BW .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1997, 23 (03) :283-301