Absence of eigenvalue at the bottom of the continuous spectrum on asymptotically hyperbolic manifolds

被引:11
作者
Bouclet, Jean-Marc [1 ]
机构
[1] Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
Asymptotically hyperbolic manifolds; Spectral and scattering theory; RIEMANNIAN-MANIFOLDS;
D O I
10.1007/s10455-012-9359-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of asymptotically hyperbolic manifolds, we show that the bottom of the continuous spectrum of the Laplace-Beltrami operator is not an eigenvalue. Our approach only uses properties of the operator near infinity and, in particular, does not require any global assumptions on the topology or the curvature, unlike previous papers on the same topic.
引用
收藏
页码:115 / 136
页数:22
相关论文
共 13 条
[1]  
Bouclet J.-M., ARXIV12075940
[2]   SEMI-CLASSICAL FUNCTIONAL CALCULUS ON MANIFOLDS WITH ENDS AND WEIGHTED Lp ESTIMATES [J].
Bouclet, Jean-Marc .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (03) :1181-1223
[3]  
DONNELLY H, 1981, MICH MATH J, V28, P53
[4]   NEGATIVE CURVATURE AND EMBEDDED EIGENVALUES [J].
DONNELLY, H .
MATHEMATISCHE ZEITSCHRIFT, 1990, 203 (02) :301-308
[5]   RIEMANNIAN-MANIFOLDS WHOSE LAPLACIANS HAVE PURELY CONTINUOUS-SPECTRUM [J].
DONNELLY, H ;
GAROFALO, N .
MATHEMATISCHE ANNALEN, 1992, 293 (01) :143-161
[6]   SPECTRAL-ANALYSIS OF 2ND-ORDER ELLIPTIC-OPERATORS ON NONCOMPACT MANIFOLDS [J].
FROESE, R ;
HISLOP, P .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (01) :103-129
[7]  
Hrmander L., 1985, The analysis of linear partial differential operators III, Pseudodifferential operators
[8]   The radial curvature of an end that makes eigenvalues vanish in the essential spectrum I [J].
Kumura, Hironori .
MATHEMATISCHE ANNALEN, 2010, 346 (04) :795-828
[10]  
Pinsky M., 1979, J DIFFER GEOM, V14