Superconductors in confined geometries

被引:0
|
作者
Xiao, Z. L. [1 ]
Hor, Y. S. [1 ]
Welp, U. [1 ]
Ito, Y. [1 ]
Patel, U. [1 ]
Hua, J. [1 ]
Mitchell, J. [1 ]
Kwok, W. K. [1 ]
Crabtree, G. W. [1 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The synthesis of nanoscale superconductors with controlled geometries is extremely challenging. In this paper we present results on synthesis and characterization of one-dimensional (1D) NbSe2 superconducting nanowires/nanoribbons. Our synthesis approach includes the synthesis of 1D NbSe3 nanostructure precursors followed by nondestructive and controlled adjustment of the Se composition to formulate NbSe2. The morphology, composition and crystallinity of the synthesized 1D NbSe2 nanostructures were analyzed with scanning electron microscopy, x-ray diffraction and transmission electron microscopy. Transport measurements were carried out to explore the electronic properties of these confined superconducting nanostructures.
引用
收藏
页码:111 / +
页数:4
相关论文
共 50 条
  • [21] Columnar discotics in confined geometries
    Kopitzke, J
    Wendorff, JH
    Glüsen, B
    LIQUID CRYSTALS, 2000, 27 (05) : 643 - 648
  • [22] Vortex physics in confined geometries
    Marchetti, MC
    Nelson, DR
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2000, 330 (3-4): : 105 - 129
  • [23] Simulations of lubricants in confined geometries
    Stevens, MJ
    Mondello, M
    Crest, GS
    DYNAMICS IN SMALL CONFINING SYSTEMS III, 1997, 464 : 65 - 70
  • [24] Colloidal diffusion in confined geometries
    Nygard, Kim
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (35) : 23632 - 23641
  • [25] Brownian motion in confined geometries
    S. M. Bezrukov
    L. Schimansky-Geier
    G. Schmid
    The European Physical Journal Special Topics, 2014, 223 : 3021 - 3025
  • [26] SOLIDIFICATION OF HELIUM IN CONFINED GEOMETRIES
    BITTNER, DN
    ADAMS, ED
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1994, 97 (5-6) : 519 - 535
  • [27] COMPOSITION WAVES IN CONFINED GEOMETRIES
    MA, WJ
    KEBLINSKI, P
    MARITAN, A
    KOPLIK, J
    BANAVAR, JR
    PHYSICAL REVIEW E, 1993, 48 (04) : R2362 - R2365
  • [28] Ring polymers in confined geometries
    Usatenko, Z.
    Halun, J.
    Kuterba, P.
    CONDENSED MATTER PHYSICS, 2016, 19 (04)
  • [29] Preface - Water in confined geometries
    Rovere, M
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (45)
  • [30] Brownian motion in confined geometries
    Bezrukov, S. M.
    Schimansky-Geier, L.
    Schmid, G.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (14): : 3021 - 3025