Functional brain hubs and their test-retest reliability: A multiband resting-state functional MRI study

被引:162
作者
Liao, Xu-Hong [1 ,2 ]
Xia, Ming-Rui [3 ,4 ]
Xu, Ting [5 ]
Dai, Zheng-Jia [3 ,4 ]
Cao, Xiao-Yan [1 ,2 ]
Niu, Hai-Jing [3 ,4 ]
Zuo, Xi-Nian [5 ]
Zang, Yu-Feng [1 ,2 ]
He, Yong [3 ,4 ]
机构
[1] Hangzhou Normal Univ, Ctr Cognit & Brain Disorders, Hangzhou 310015, Zhejiang, Peoples R China
[2] Zhejiang Key Lab Res Assessment Cognit Impairment, Hangzhou, Zhejiang, Peoples R China
[3] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[4] Beijing Normal Univ, IDG McGovern Inst Brain Res, Beijing 100875, Peoples R China
[5] Chinese Acad Sci, Inst Psychol, Magnet Resonance Imaging Res Ctr, Key Lab Behav Sci,Lab Funct Connectome & Dev, Beijing 100101, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Functional connectivity; Connectome; Graph theory; Default-mode; Global signals; fMRI; CONNECTIVITY MRI; CEREBRAL-CORTEX; GLOBAL SIGNAL; LOW-FREQUENCY; NETWORK; FLUCTUATIONS; ORGANIZATION; ARCHITECTURE; CENTRALITY; REGRESSION;
D O I
10.1016/j.neuroimage.2013.07.058
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Resting-state functional MRI (R-fMRI) has emerged as a promising neuroimaging technique used to identify global hubs of the human brain functional connectome. However, most R-fMRI studies on functional hubs mainly utilize traditional R-fMRI data with relatively low sampling rates (e.g., repetition time [TR] = 2 s). R-fMRI data scanned with higher sampling rates are important for the characterization of reliable functional connectomes because they can provide temporally complementary information about functional integration among brain regions and simultaneously reduce the effects of high frequency physiological noise. Here, we employed a publicly available multiband R-fMRI dataset with a sub-second sampling rate (TR = 645 ms) to identify global hubs in the human voxel-wise functional networks, and further examined their test-retest (TRT) reliability over scanning time. We showed that the functional hubs of human brain networks were mainly located at the default-mode regions (e.g., medial prefrontal and parietal cortex as well as the lateral parietal and temporal cortex) and the sensorimotor and visual cortex. These hub regions were highly anatomically distance-dependent, where short-range and long-range hubs were primarily located at the primary cortex and the multimodal association cortex, respectively. We found that most functional hubs exhibited fair to good TRT reliability using intraclass correlation coefficients. Interestingly, our analysis suggested that a 6-minute scan duration was able to reliably detect these functional hubs. Further comparison analysis revealed that these results were approximately consistent with those obtained using traditional R-fMRI scans of the same subjects with TR = 2500 ms, but several regions (e.g., lateral frontal cortex, paracentral lobule and anterior temporal lobe) exhibited different TRT reliability. Finally, we showed that several regions (including the medial/lateral prefrontal cortex and lateral temporal cortex) were identified as brain hubs in a high frequency band (02-03 Hz), which is beyond the frequency scope of traditional R-fMRI scans. Our results demonstrated the validity of multiband R4MRI data to reliably detect functional hubs in the voxel-wise whole-brain networks, which motivated the acquisition of high temporal resolution R-fMRI data for the studies of human brain functional connectomes in healthy and diseased conditions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:969 / 982
页数:14
相关论文
共 60 条
[1]   A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J].
Achard, S ;
Salvador, R ;
Whitcher, B ;
Suckling, J ;
Bullmore, ET .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :63-72
[2]   The Anatomical Distance of Functional Connections Predicts Brain Network Topology in Health and Schizophrenia [J].
Alexander-Bloch, Aaron F. ;
Vertes, Petra E. ;
Stidd, Reva ;
Lalonde, Francois ;
Clasen, Liv ;
Rapoport, Judith ;
Giedd, Jay ;
Bullmore, Edward T. ;
Gogtay, Nitin .
CEREBRAL CORTEX, 2013, 23 (01) :127-138
[3]   Conserved and variable architecture of human white matter connectivity [J].
Bassett, Danielle S. ;
Brown, Jesse A. ;
Deshpande, Vibhas ;
Carlson, Jean M. ;
Grafton, Scott T. .
NEUROIMAGE, 2011, 54 (02) :1262-1279
[4]   Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI [J].
Birn, RM ;
Diamond, JB ;
Smith, MA ;
Bandettini, PA .
NEUROIMAGE, 2006, 31 (04) :1536-1548
[5]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[6]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[7]   Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures [J].
Braun, Urs ;
Plichta, Michael M. ;
Esslinger, Christine ;
Sauer, Carina ;
Haddad, Leila ;
Grimm, Oliver ;
Mier, Daniela ;
Mohnke, Sebastian ;
Heinz, Andreas ;
Erk, Susanne ;
Walter, Henrik ;
Seiferth, Nina ;
Kirsch, Peter ;
Meyer-Lindenberg, Andreas .
NEUROIMAGE, 2012, 59 (02) :1404-1412
[8]   The brain's default network - Anatomy, function, and relevance to disease [J].
Buckner, Randy L. ;
Andrews-Hanna, Jessica R. ;
Schacter, Daniel L. .
YEAR IN COGNITIVE NEUROSCIENCE 2008, 2008, 1124 :1-38
[9]   Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease [J].
Buckner, Randy L. ;
Sepulcre, Jorge ;
Talukdar, Tanveer ;
Krienen, Fenna M. ;
Liu, Hesheng ;
Hedden, Trey ;
Andrews-Hanna, Jessica R. ;
Sperling, Reisa A. ;
Johnson, Keith A. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (06) :1860-1873
[10]   The economy of brain network organization [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (05) :336-349