Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment

被引:84
作者
Huang, H. W. [1 ]
Wang, Z. B. [1 ]
Yong, X. P. [2 ]
Lu, K. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Shenyang Blower Works Grp Co Ltd, Shenyang 110869, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanostructured materials; Gradient nanograined; Surface mechanical grinding treatment; Martensitic stainless steel; Torsion fatigue; SEVERE PLASTIC-DEFORMATION; ULTRAFINE-GRAINED METALS; ATTRITION TREATMENT; NANOCRYSTALLINE METALS; RESISTANCE; ALLOYS; TITANIUM; MICROSTRUCTURE; COPPER;
D O I
10.1179/1743284712Y.0000000192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A gradient nanograined (GNG) surface layer was formed on a martensitic stainless steel bar sample by means of the surface mechanical grinding treatment (SMGT). The average grain size is similar to 25 nm on the topmost surface layer and increases gradually with increasing depth. The torsion fatigue strength is elevated by 38% with the GNG surface layer compared with the original material. An additional 8% increment in fatigue strength is achieved after a post-annealing treatment of the SMGT sample. By analysing the microstructure, hardness, surface roughness and residual stress distribution in the SMGT samples, we believe that the enhanced fatigue resistances originate from the GNG structure with a hard surface layer and a high structural homogeneity.
引用
收藏
页码:1200 / 1205
页数:6
相关论文
共 31 条
[1]   Fatigue life behaviour of the dual-phase low carbon steel sheets [J].
Akay, S. K. ;
Yazici, M. ;
Bayram, A. ;
Avinc, A. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (07) :3358-3365
[2]  
[Anonymous], 1970, Theory of elasticity (3rd Edition)
[3]   The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses [J].
Baleani, M ;
Viceconti, M ;
Toni, A .
ARTIFICIAL ORGANS, 2000, 24 (04) :296-299
[4]   Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals [J].
Cavaliere, P. .
INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (10) :1476-1489
[5]   Analysis of fatigue resistance improvements via surface severe plastic deformation [J].
Dai, K. ;
Shaw, L. .
INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (08) :1398-1408
[6]   Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper [J].
Fang, T. H. ;
Li, W. L. ;
Tao, N. R. ;
Lu, K. .
SCIENCE, 2011, 331 (6024) :1587-1590
[7]   An approach for prediction of fatigue strength of shot peened components [J].
Guagliano, M ;
Vergani, L .
ENGINEERING FRACTURE MECHANICS, 2004, 71 (4-6) :501-512
[8]   Low cycle fatigue behavior and failure mechanism of a dual-phase steel [J].
Hadianfard, M. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 499 (1-2) :493-499
[9]   Fatigue behavior of nanocrystalline metals and alloys [J].
Hanlon, T ;
Tabachnikova, ED ;
Suresh, S .
INTERNATIONAL JOURNAL OF FATIGUE, 2005, 27 (10-12) :1147-1158
[10]   Grain size effects on the fatigue response of nanocrystalline metals [J].
Hanlon, T ;
Kwon, YN ;
Suresh, S .
SCRIPTA MATERIALIA, 2003, 49 (07) :675-680