On the diophantine equation x2 + p2k = yn

被引:25
作者
Berczes, Attila [1 ]
Pink, Istvan [1 ]
机构
[1] Univ Debrecen, Hungarian Acad Sci, Inst Math, Number Theory Res Grp, H-4010 Debrecen, Hungary
关键词
Exponential diophantine equations; primitive divisors;
D O I
10.1007/s00013-008-2847-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 2 <= p < 100 be a rational prime and consider equation (3) in the title in integer unknowns x, y, n, k with x > 0, y > 1, n >= 3 prime, k >= 0 and gcd(x, y) = 1. Under the above conditions we give all solutions of the title equation (see the Theorem). We note that if in (3) gcd(x, y) = 1, our Theorem is an extension of several earlier results [15], [27], [2], [3], [5], [23].
引用
收藏
页码:505 / 517
页数:13
相关论文
共 41 条
[1]   On the Diophantine equation x2+5a 13b = yn [J].
Abu Muriefah, Fadwa S. ;
Luca, Florian ;
Togbe, Alain .
GLASGOW MATHEMATICAL JOURNAL, 2008, 50 :175-181
[2]  
Abu Muriefah Fadwa S., 2006, Rev.colomb.mat., V40, P31
[3]  
Abu Muriefah FS, 2001, ARAB J SCI ENG, V26, P53
[4]  
Arif S. A., 2001, ARAB J MATH SCI, V7, P67
[5]  
Arif S. A., 1998, INT J MATH MATH SCI, V21, P619, DOI DOI 10.1155/S0161171298000866
[6]  
Arif S. A., 1997, INT J MATH MATH SCI, V20, P299
[7]   On the diophantine equation x2+q2k+1=yn [J].
Arif, SA ;
Abu Muriefah, FS .
JOURNAL OF NUMBER THEORY, 2002, 95 (01) :95-100
[8]  
Bennett M. A., DIOPHANTINE EQ UNPUB
[9]   Ternary diophantine equations via galois representations and modular forms [J].
Bennett, MA ;
Skinner, CM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01) :23-54
[10]  
Bérczes A, 1998, PUBL MATH-DEBRECEN, V53, P375