Explicit transversality conditions and local bifurcation diagrams for Bogdanov-Takens bifurcation on center manifolds

被引:2
作者
Li, Yang [1 ,2 ]
Kokubu, Hiroshi [3 ]
Aihara, Kazuyuki [1 ,2 ]
机构
[1] Univ Tokyo, Dept Math Informat, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[3] Kyoto Univ, Dept Math, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
关键词
Bogdanov-Takens bifurcation; Center manifold; Homological method; Transversality condition; Bifurcation diagram; Normal form; CODIM; 2; BIFURCATIONS; NORMAL FORMS; VECTOR-FIELDS; NORMALIZATION; SINGULARITY; OSCILLATOR; EQUILIBRIA; POINTS; CYCLES; PLANE;
D O I
10.1016/j.physd.2018.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This application-oriented study is concerned with the derivation of parameter-dependent normal forms for the codimension-two Bogdanov-Takens bifurcation of n-dimensional, m-parameterized systems on the basis of the homological method. In the case of an enduring equilibrium, simple formulas are obtained for the transformation of parameters, enabling the formulation of explicit transversality conditions and bifurcation diagrams to at most the second order. Moreover, in Z(2)-symmetric systems, the calculation can be further limited within certain subspaces. In the general case, existing results are re-derived, and a revision necessary for determining the bifurcation diagrams to the second order is then provided. These results facilitate the derivation of normal forms, check of transversality and depiction of bifurcation diagrams for the Bogdanov-Takens bifurcation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 65
页数:14
相关论文
共 43 条
[1]   Initialization of Homoclinic Solutions near Bogdanov-Takens Points: Lindstedt-Poincare Compared with Regular Perturbation Method [J].
Al-Hdaibat, B. ;
Govaerts, W. ;
Kuznetsov, Yu. A. ;
Meijer, H. G. E. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02) :952-980
[2]  
Algaba A, 1999, IEICE T FUND ELECTR, VE82A, P1722
[3]  
Algaba A., 2002, QUALIT THEORY DYNAM, V3, P377
[4]  
[Anonymous], 1991, UNFOLDINGS SADDLE FO
[5]  
[Anonymous], LECT NOTES MATH
[6]  
[Anonymous], J DIFFERENTIAL EQUAT
[7]  
Bazykin AD, 1998, WORLD SCI SERIES N A, V11, DOI [10.1142/2284, DOI 10.1142/2284]
[8]  
Beyn W-J., 2002, Handbook of Dynamical Systems, P149, DOI [DOI 10.1016/S1874-575X, DOI 10.1016/S1874-575X(02)80025-X, 10.1016/S1874-575X(02)80025-X]
[9]  
Bogdanov R.I., 1976, T SEM PETROVSK, V2, P37
[10]  
BOGDANOV R. I., 1976, Trudy Sem. Petrovsk. Vyp., V2, P23