Serre's Conjecture and Base Change for GL(2)

被引:0
作者
Hida, Haruzo [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Serres mod p modularity conjecture; Hecke algebra; base-change; permutation representation; TOTALLY-REAL FIELDS; HILBERT MODULAR-FORMS; REPRESENTATIONS; MOTIVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for an odd cyclic totally real extension F/Q, assuming Serre's modularity conjecture of 2-dimension odd mod p Galois representations, we give an elementary proof of the Langlands base change from a space of automorphic forms on the multiplicative group of a definite quaternion algebra B(/Q) to the corresponding space on the multiplicative group of B(F) = B circle times(Q) F (under some mild assumptions). More generally, for a general totally real Galois extension, we state a conjecture describing the action of Gal(F/Q) on the 0-dimensional automorphic variety of B(F)(x) which implies the existence of base-change relative to F/Q.
引用
收藏
页码:81 / 125
页数:45
相关论文
共 50 条
  • [1] [Anonymous], 1982, GRADUATE TEXTS MATH
  • [2] [Anonymous], 1980, BASE CHANGE GL 2
  • [3] [Anonymous], 1982, Izv. Akad. Nauk SSSR Ser. Mat.
  • [4] [Anonymous], SPRINGER MONOGRAPHS
  • [5] Arthur J., 1989, Annals of Mathematics Studies, V120
  • [6] Blasius D, 2004, CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, P83
  • [7] MOTIVES FOR HILBERT MODULAR-FORMS
    BLASIUS, D
    ROGAWSKI, JD
    [J]. INVENTIONES MATHEMATICAE, 1993, 114 (01) : 55 - 87
  • [8] BOREL A, 1966, P S PUR MATH AMS, V9
  • [9] BOREL A, 1979, P S PURE MATH AM MAT, V33
  • [10] DIAMOND F, 1995, SER NUM THEORY, V1, P22